APPENDIX D: STORMWATER TIR

Technical Information Report

Submitted to City of Kirkland

January 2025

NE 85th Street Ped/Bike Connection – 114th Avenue NE to 6th Street Project

PERTEET.COM 801 2ND AVENUE, SUITE 302 SEATTLE, WA 98104 206.436.0515

TECHNICAL INFORMATION REPORT

Project:	NE 85th Street Ped/Bike Connection – 114th Avenue NE to 6th Street Project Kirkland, Washington
Date:	January 2025
Civil Engineer: (Seattle):	Perteet Inc. 801 2nd Avenue, Suite 302 Seattle, Washington 98104 Phone #: 206.436.0515

Stormwater Lead:Thomas Cheong, PEStormwater Engineer:Nathan Hahne, EIT

Signature	here
Name Thomas Cheong	
Date 1/7/2025	

TABLE OF CONTENTS

1.0	PROJECT OVERVIEW	1
2.0	CONDITIONS AND REQUIREMENT SUMMARY	3
3.0	OFF-SITE ANALYSIS	7
4.0	FLOW CONTROL, LOW IMPACT DEVELOPMENT (LID), AND WATER QUALITY FACILITY ANALYSIS AND DESIGN	19
5.0	CONVEYANCE SYSTEM ANALYSIS AND DESIGN	22
6.0	SPECIAL REPORTS AND STUDIES	23
7.0	OTHER PERMITS	23
8.0	CSWPP ANALYSIS AND DESIGN	24
9.0	BOND QUANTITIES, FACILITY SUMMARIES, AND DECLARATION OF COVENANT	25
10.0	OPERATIONS AND MAINTENANCE MANUAL	25

LIST OF TABLES

TABLE 1.1.1. EXISTING CONDITIONS	1
TABLE 1.1.1. EXISTING CONDITIONS	2
TABLE 2.0.2. EXPLANATION OF CORE REQUIREMENTS.	5
TABLE 2.0.3. EXPLANATION OF SPECIAL REQUIREMENTS.	6
TABLE 4.2.1. PROPOSED LAND COVER	
TABLE 4.4.1. ON-SITE CAPTURE AREA (FLOW CONTROL)	
TABLE 4.3.1. FLOW CONTROL BMP FEASIBILITY SUMMARY	22
TABLE 8. SUMMARY OF ESC MEASURES	24

LIST OF FIGURES

Figure 2.1. Drainage Review Filow Chart	4

LIST OF APPENDICES

APPENDIX A:	Existing Conditions Figures
APPENDIX B:	Proposed Conditions Figures
APPENDIX C:	Flow Control and Water Quality Calculations
APPENDIX D:	Conveyance Calculations
APPENDIX E:	Drainage Plans
APPENDIX F:	Geotechnical Report INCLUDED IN CONTRACT DOCUMENTS
APPENDIX G:	Operations and Maintenance
APPENDIX H:	Drainage Design Criteria
APPENDIX I:	TIR Worksheet

1.0 PROJECT OVERVIEW

The City of Kirkland NE 85th Street Pedestrian and Bike Connection project is on a principal arterial road and area situated within the right-of-way limits of NE 85th Street between 6th Street and 114th Avenue NE. The project falls within the southeast portion of Section 5, Township 25 North, Range 5 East of the Willamette Principal Meridian. The approximate 5.55 acres of the project area is bounded by commercial buildings to the west, industrial buildings to the north and southeast, office and high-density residential buildings to the south and residential homes to the northeast. See Figure A.1 in Appendix A of this report for the vicinity map of the site location.

The project proposes a new pedestrian and bicycle path addition on the south side of NE 85th Street from 6th Street to 114th Avenue NE, creating a connection to the Cross Kirkland Corridor (CKC). In addition to the pedestrian and bicycle improvements, other improvements include a proposed storm drain conveyance system, illumination, landscaping, and a pedestrian bridge crossing over the CKC.

There are multiple existing drainage systems currently collecting stormwater from the site. Ultimately, these systems discharge runoff to the east and combine at an existing conveyance system near the southwest corner of the project site. Thus, a single Threshold Discharge Area (TDA) was identified in the project area. The drainage systems are discussed further in Section 4.1 – Existing Site Hydrology.

This project is designed to meet the requirements of the 2021 King County Surface Water Design Manual (KCSWDM) with modifications adopted by the City of Kirkland.

1.1 Existing Conditions

The project site is a developed four-lane roadway with moderate to steep slopes on both sides of the roadway west from the NE 85th Street and I-405 interchange. The roadway consists of a typical lane width of 11 feet and a 4 feet shoulder along both sides. On both ends of the project limits, at 6th Street and 114th Avenue NE, the roadway expands to six-lanes with two southbound protected left turn lanes at 6th Street, one westbound merge lane and one northbound protected left turn lane at 114th Avenue NE. The roadway is crowned at an offset from the existing centerline approaching the bridge over the CKC and transitions to a super-elevation toward 6th Street at STA 14+25. Curbs are identified along the guardrail adjacent at both ends of the roadway and were observed to be in good condition with no sign of erosion. Overall, the roadway seems to be in good condition with a fair amount of longitudinal cracking.

The roadway has a flat to moderate incline approaching the bridge with longitudinal and transverse slopes at a maximum grade of 6% and 3%, respectively. The existing slopes limit ponding and force runoff to sheet flow into a closed stormwater conveyance system composed of catch basins and storm drain pipe.

Table 1.1.1 below summarizes the delineation of land cover associated with the existing conditions of the site.

	Dollution	Non Pollution	Area		
TDA	Generating Impervious Surface (PGIS)	Generating Impervious Surface (NPGIS)	Total Existing Impervious Surface	Existing Pervious	Total TDA Area
TDA 1	147,487 SF	15,780 SF	163,267 SF	84,919 SF	248,138 SF

Table 1.1.1. Existing Conditions.

1.2 Proposed Conditions

The proposed improvements include the introduction of a new pedestrian and bike path on the south side of the project site, replacing the existing storm drainage and providing on-site stormwater management. The typical cross section of the path is 4' of exposed aggregate/planter boxes and 13.5' of sidewalk. This accounts for the increase in NPGIS below, as well as the decrease in pervious surfaces, and roadway surface (PGIS). The existing roadway geometry will remain unchanged, and the new path will slope back toward the roadway. Stormwater will be collected and routed by a series of catch basins along the gutter line of NE 85th Street. A flow splitter, at the west end of the project site, will be proposed to split flows between the detention vault and the storm network that bypasses the detention vault. Proximity to a steep slope and infiltration testing, performed as a part of the geotechnical report in Appendix F, determined that infiltration is not feasible within the project area. Thus, all runoff will be captured in catch basins and conveyed to the west in storm drain pipes. The existing connection to the storm drain system at the intersection of NE 85th Street and 6th Street will remain. See Sections 4.1 and 4.2 for a discussion of the existing and proposed facilities. The proposed detention vault facility is discussed below in Section 4.5.

Tables 1.2.1 and 4.2.1 below detail the proposed land cover conditions. See Appendix B for the proposed conditions figures.

			Area		
TDA	Pollution Generating Impervious Surface (PGIS)	Non-Pollution Generating Impervious Surface (NPGIS)	Total Impervious Surface	Pervious	Total TDA Area *
TDA 1	141,029 SF	49,974 SF	191,003 SF	57,135 SF	248,138 SF

Table 1.2.1. Proposed Conditions.

*The total proposed area is equal to the summation of total new and replaced impervious and new pervious surfaces.

1.3 Site Soils

Based on review of the US Department of Agriculture National Resources Conservation Services (NRCS) Web Soils Survey (WSS), the soils within the TDA consist of the following:

On-site soils within the project site consist of 100% of Alderwood Gravelly Sandy Loam (AgC) at 8-15 percent slopes. This soil type is listed as hydrologic Soil Group B, but is known to be a Group C soil. The site estimates that the depth of the water table is roughly two feet. See Appendix Figure A.3 for the Soils Map.

2.0 CONDITIONS AND REQUIREMENT SUMMARY

The NE 85th Street Ped/Bike Connection project is designed to meet the requirements outlined in the 2021 King County Surface Design Manual (2021 KCSWDM) and the City of Kirkland's Addendum to the 2021 KCSWDM This project is proposing 28,371 SF and 15,577 SF of new and replaced impervious surfaces, respectively. Twelveinch storm drainage pipes will be proposed along the project, while maintaining existing systems. Since the project will install over 2,000 SF of new plus replaced impervious surfaces it will be subject to a full drainage review under the City of Kirkland's Policy D-3 (see Figure 2.1 for the Drainage Review Flow Chart) and will be exempt from some of the Core Requirements and Special Requirements. For a summary of which requirements will be required or exempt and an associated explanation, refer to Table 2.0.2. Tables 2.0.2 and 2.0.3 summarize the Core and Special Requirements with which the project must comply.

SECTION 1.1 DRAINAGE REVIEW

4/24/2016

Figure 2.1. Drainage Review Flow Chart.

2016 Surface Water Design Manual

Core Requirement (CR)/Special	Required or	
Requirement (SR)	Exempt?	Explanation
CR #1 – Discharge at Natural Location	Required	All stormwater runoff from the project must be discharged at the natural location so as not to be diverted onto or away from down slope properties and runoff must not create a significant adverse impact to downhill properties. There are no exemptions to this requirement
CP #2 Off Site Anglucis	Paguirad	There will be no exemptions to this requirement since
	Required	the project is located on an erosion, steep slope, and landslide hazard area. See Section 3 of this memo.
CR #3 – Flow Control	Required	The project creates more than 5,000 SF of new plus replaced impervious surfaces, so Flow Control is required for the Project. The project is partially in a Conservation Flow Control area, meaning that Level 2 Flow Control is required. The targeted surfaces for this project are new impervious, and not replaced, because new impervious surfaces add less than 50% to the existing impervious surfaces within the project site.
CR #4 – Conveyance System	Required	All engineered conveyance system elements for proposed projects must be analyzed, designed, and constructed to provide a minimum level of protection against overtopping, flooding, erosion, and structural failure.
CR #5 – Erosion and Sediment Control (ESC)	Required	All proposed projects that will clear, grade, or otherwise disturb the site must provide erosion and sediment controls to prevent sediment from leaving the site as much as possible.
CR #6 – Maintenance and Operations	Required	Maintenance and operation of all drainage facilities is the responsibility of the City of Kirkland who assumes maintenance and operation in the Kirkland Municipal Code (KMC) 15.52.070. Drainage facilities must be maintained and operated in accordance with the maintenance standards.
CR #7 — Financial Guarantees and	Required	All stormwater facilities will be owned and maintained
Liability		by the City of Kirkland per KMC 15.52.080.
CR #8 – Water Quality Facilities	Exempt	The project creates less than 5,000 SF of new pollution generating impervious surfaces (PGIS) and will be exempt from this Core Requirement.
CR #9 – Flow Control BMPs	Required	This is not feasible due to proximity to steep slopes.

Table 2.0.2. Explanation of Core Requirements.

Special Requirement (SR)	Required or Exempt?	Explanation
SR #1 – Other Adopted Area-Specific	Exempt	Project is not in an area with specific requirements.
Requirements		
SR #2 – Flood Hazard Area	Exempt	The project is not located in a flood hazard area.
Delineation		
SR #3 – Flood Protection Facilities	Exempt	According to the City of Kirkland's Addendum to the
		2021 KCSWDM, this section does not apply.
SR #4 – Source Controls	Exempt	The project is a roadway project with no commercial
		buildings.
SR #5 – Oil Control	Exempt	The project is not located in a high-use site and creates
		less than 5,000 SF of new pollution generating
		impervious surfaces (PGIS). Therefore, this project is
		exempt from this Special Requirement.

Table 2.0.3. Explanation of Special Requirements.

3.0 OFF-SITE ANALYSIS

The Kirkland NE 85th Street Ped/Bike Connection project expands the southern end of the corridor along NE 85th Street from 6th Street to 114th Avenue NE. Currently utilized as a major east-west corridor for vehicle traffic. The proposed work on the project is to install a bike and pedestrian path to promote multimodal transportation along NE 85th Street.

A level 1 site reconnaissance investigation was completed on February 28, 2023. The purpose of the investigation was to confirm the on-site and off-site storm drainage systems and storm drainage patterns, as well as to qualitatively analyze the related existing downstream stormwater conveyance systems. The weather was rainy with a temperature of 50 degrees Fahrenheit. Prior to being on-site, the topography and existing conveyance systems were observed using information from the topographic survey basemap and the City of Kirkland GIS system.

In TDA 1, the project is located in the East Lake Washington – Bellevue North Basin where runoff will discharge directly into Lake Washington from a piped conveyance system downstream of the project, which is considered a stream by the City of Kirkland. See Figures A.1 and A.2 for the Site Vicinity Map, TDA Location Map, respectively.

3.1 Resource Review

Floodplain/Floodway (FEMA) Maps

This site is not delineated within a floodplain or floodway.

Sensitive Area

Refer to Figure A.4 in Appendix A for the critical areas that affect and are closest to the project area. This map combines maps of the project's area, the surrounding waters, floodplains, wetlands, and environmentally sensitive areas.

<u>Streams:</u>	The downstream "stream in pipe" is the main stream in the project's vicinity.
<u>Floodplains</u> :	The site is not delineated within a floodplain or floodway.
<u>Wetlands</u> :	There are no wetlands on or near the site.
<u>Erosion Hazard Areas</u> :	According to King County GIS, the site is not recorded as an Erosion Hazard
	Area. However, there is known erosion concern due to steep slopes.
Landslide Hazard Areas:	The site is located within a Landslide Hazard Area.

DNRP Drainage Complaints and Studies

Per the King County Water and Land Resources Division, there are three relevant (resolved within the last 10 years) drainage complaints surrounding the site. The following complaints are listed below:

- 2018-0990: flooding complaint, resolved.
- 2018-0991: flooding complaint, resolved.
- 2018-0992: flooding complaint, resolved.

City of Kirkland Drainage Complaints

According to Kirkland Public Records, there are no drainage complaints within a mile downstream of the project site.

Road Drainage Problems

There are no known roadway drainage problems.

Soils Survey

The NRCS WSS is briefly discussed in Section 1.3 (see Figure A.3 for an overview of the soil's classification surrounding the project site).

Department of Ecology Water Quality Assessment

Ecology's Water Quality Atlas contains 303 (d) listings for Lake Washington:

- Lead (Category 2)
- Ammonia-N (Categories 1 and 2)
- Bacteria Fecal Coliform (Categories 1, 2, and 5)
- Mercury (Category 2)
- Non-Native Aquatic Plants (Category 4C)

King County Designated Water Quality Program

There are no known water quality issues.

Other Adopted Area-Specific Requirements

There are no known water quality issues.

3.2 Field Inspection

A field inspection was performed on February 28, 2023, with representatives from Perteet present. The day was overcast, and conditions were wet due to continuous precipitation leading up to and during the investigation. Onsite conditions were inspected to identify any drainage problems not found during resource review. The entire length of the project was inspected, and drainage structures, roadway features, and existing conditions were documented below. The locations of the following photos are depicted in Figure A.5 in Appendix A.

Photo 1. North side of the road, looking east. Taken at west end of project near 6th.

Photo 2. North side of the road, looking west. Taken at the west end of the project near 6th.

Photo 3. Discharge location on north side of project.

Photo 4. Drainage ditch under bridge on CKC near east end of project. Leaves TDA limits and flows north.

Photo 5. Outfall location on north side of project, east of the bridge.

Photo 6. Discharge location near intersection of 85th and 114th.

Photo 7. Catch basin on south side of road just east of the bridge.

Photo 8. Discharge point on south side, just west of the bridge.

Photo 9. Existing ditch south of 85th.

Photo 10. Outfall location south of 85th.

Photo 11. Catch basin on pedestrian path south of 85th.

Photo 12. Catch basin along pedestrian path.

Photo 13. Ditch enters tightline conveyance system south of 85th.

Photo 14. 6th Street looking south. Shown on the middle right side of the picture in the middle lane is the catch basin where the downstream discharge routes combine.

3.3 Drainage System Description and Problem Description

This section describes possible upstream impacts of the project and analyzes downstream flow paths and potential issues ¼ mile downstream from the project site.

3.3.1 Upstream Analysis

Off-site runoff enters the project limits from one location at the intersection of NE 85th Street and 114th Avenue NE. Runoff from the sidewalk and roadway surfaces sheet flows in a westerly direction from the intersection and is captured by an existing conveyance system, via catch basins at the northeast and southeast corners of the bridge crossing the CKC. The northeastern catch basin outfalls into a stream flowing in a westerly direction. While the southeastern catch basin outfalls to a ditch system and flows northernly until connecting with the stream. Both outfalls are connected to one of three stormwater systems that crosses the project site, but does not connect into the stormwater system along NE 85th Street. Therefore, all runoff collected in the surrounding area from the various land use is routed around or through the project site. See Section 3.3.2 for a defined delineation of the discharge points and downstream flow paths.

3.3.2 Downstream Analysis

There are 12 discharge points shown and numbered within the project site on Figure A.5 in Appendix A. 11 of the 12 discharge points leave the site and outfall within three stormwater systems as mentioned in Section 3.3.1, which eventually meet in an existing conveyance system within a quarter mile. Each of the stormwater systems collects runoff from the surrounding upstream area and from the project's discharge points, routing runoff around and through the project site without connection to the stormwater system along NE 85th Street.

The first stormwater system to the north collects runoff from Discharge Points 7-12 and upstream area from I-405, residential, commercial, and industrial buildings to the north and east of the project site. Discharge Point 12 on the east end of the project enters an existing tightline system that then outfalls to the north into an existing stream. Discharge Point 11 enters the stream from the south, after flowing north from NE 85th Street for approximately 120 feet. Discharge Point 7 collects runoff from a catch basin near the southeast corner of the bridge and outfalls to a ditch on the east side of the CKC. The ditch directs the runoff north for approximately 150 feet before intercepting an easterly flowing stream. Then traveling west through a conveyance system, meeting up with a lateral line flowing from Discharge Point 10. Discharge Points 8 and 9, the westernmost of these, each flow roughly 100 feet in an outfall pipe that will meet the combined streamflow. Just after the stream's confluence with Discharge Point 8, the streamflow will travel through a culvert for roughly 300 feet south, crossing the project site, before intercepting the second stormwater system through a conveyance system at CB #8494.

The second stormwater system to the south collects runoff from Discharge Points 3-6 and upstream area from the highly dense residential and commercial buildings from the south. Discharge Points 4, 5, and 6 each flow roughly between 80-130 feet before outfalling into a ditch, meeting with the second stormwater system. The combined flows travel easterly, parallel to the south side of the project site, through a piped system just after Discharge Point 4 and meets up with the flow from Discharge Point 3 and the first stormwater system at CB #8494. Stormwater will continue westward and combine with the third stormwater system and Discharge Point 2 at CB #7855. The third stormwater system collects runoff from Discharge 1 and upstream area from commercial buildings located near the northwestern corner of the project site. The stormwater system crosses the project along east side of intersection of NE 8th Street and 6th Street. Discharge Point 2 collects roadway runoff from the southwest side of the project site.

The third stormwater system at Discharge Point 2 will exit the project site through a piped conveyance system and merge with the rest of the flows from the first and second stormwater systems at CB #7855. After the convergent point, the combined flow heads west for approximately 250 feet in the piped conveyance system before traveling along the south side of Central Way. The flow path continues southeasterly for approximately 1,050 feet until the ¼ mile mark is reached.

3.4 Mitigation of Existing or Potential Problems

The primary problems encountered during resource review and field inspection are water quality concerns and flooding issues near the downstream system. The review of the 303d listings for Lake Washington shows several different Category 5 issues. The proposed system will remove sediment via catch basins and the detention facility, which will decrease the project's impact on these existing drainage issues. The detention of runoff from NE 85th Street will mitigate flow from the project site, reducing the impact of the project. The drainage complaints found near the flow path downstream of the project have all been resolved, and most of them have been resolved over a decade ago. Also, there are detention facilities visible on Central Way and 6th Street that should aid in prevention of potential flooding, in addition to the facility added with this project. No downstream impacts are expected to occur as part of this project.

4.0 FLOW CONTROL, LOW IMPACT DEVELOPMENT (LID), AND WATER QUALITY FACILITY ANALYSIS AND DESIGN

4.1 Existing Site Hydrology

The entire corridor is curbed where water is conveyed toward the gutter on either side of the roadway. The roadway is crowned with a longitudinal and transverse slope of roughly 6% and 2%, respectively. Along NE 85th Street, the main stormwater system collects runoff from a series of catch basins. These catch basins direct runoff down the hillside through 8" PVC pipes and immediately outfall into a stream system on the north side or ditch system on the south side. Refer to Section 3.3.2 for details on the downstream analysis. There is no typical lateral and trunk line configuration presented on NE 85th Street until the southwest end of the project near 6th Street. At this location, stormwater will be collected by a conveyance system just downstream from the median island and discharge from the project site at a distance of 250 ft from the initial point of the conveyance system.

4.2 Proposed Site Hydrology

The project site consists of a single Threshold Discharge Area (TDA) with the improvements being proposed on the south side of the project area. One of the improvements is a stormwater conveyance system along the south side of NE 85th Street, where a series of catch basins will be added to the new flowline to capture runoff. The road slopes consistently toward the west without forming any low points. Runoff from the roadway will flow south toward the gutter, while runoff from the pedestrian and bicycle path, as well as the pedestrian bridge, will flow north into the stormwater conveyance system. The pedestrian bridge will not include structures to capture runoff, as the path on the bridge will not be affected by flow spread or depth. Captured runoff will be routed west through a piped conveyance system, replacing the existing downhill outfalls. The proposed flow control system location will be infeasible to install and maintain access within the proposed project area or within the hillside. Therefore, the proposed location is at the base of the hill within a flat surface. This suitable area is available at the southeast corner of the intersection of NE 85th Street and 6th Street, between NE 85th Street and the parking lot adjacent to the pedestrian path in order to prevent significant disturbance to the existing pavement.

The flow control system proposed for this project is to provide the required detention of stormwater. However, the amount of runoff collected from NE 85th Street will exceed the system's allowable capacity without installing a flow splitter to regulate mitigated and unmitigated flows, see Figure C.1-C.4 in Appendix C. A flow splitter will be necessary prior to the proposed detention vault. WWHM was used as a tool to assist in creating the flow splitter rating table due to its ease and speed to perform that type of hydraulic calculation. Perteet's design splits the respective 100-year flow rates between the proposed flow control system and the existing conveyance system along NE 85th Street at approximately the same elevation head. Refer to Section 4.4 and Section 5.0 for more information on detention vault sizing and conveyance analysis, respectively.

4.3 Performance Standards

Table 4.2.1 below summarizes the proposed land cover areas as well as flow control and water quality thresholds for each TDA within the project. Note that this project is in a Conservation Flow Control Area according to the City of Kirkland's Flow Control Map and will be subjected to a Level 2 flow control standard. The project site is shown in a Conservation Flow Control Area because the City classifies the conveyance system runs along the north side of 85th and crosses 6th Ave as a stream, as mentioned in Section 3.1. The project is characterized as a transportation redevelopment project. All of the applicable core requirements (1-7 and 9) apply to new hard surfaces only.

	Surface	Area
	Sundce	TDA 1
A	New PGIS	0 SF
В	New NPGIS	29,036 SF
С	Converted PGIS (previously NPGIS)*	40 SF
D	Replaced PGIS	7,720 SF
E	Replaced NPGIS	10,383 SF
F	New Pervious	1,094 SF
	Total	48,068 SF
	Project Analysis	
	Surface	Area
	Sunace	TDA 1
Table 2-1	Existing Impervious Surface	163,250 SF
A + B	New Impervious Surface	29,036 SF
	Percent New Impervious Surface/	17.9%
	Existing Impervious Surface	17.0%
	TDA Analysis	
	Surface	Area
	Sunde	TDA 1
A + B + F	New Impervious and Pervious Surfaces	30,130 SF
	Flow Control Required:	Yes
A+C	New Plus Converted PGIS	40 SF
	Water Quality Required:	No

Table 4.2.1. Proposed Land Cover.

*This is the total area of existing NPGIS that has been converted to PGIS in the proposed condition. This area is counted as new PGIS for water quality treatment and Replaced Impervious for flow control calculations.

As determined by the threshold analysis from the table above, flow control will apply to the project because more than 5,000 square feet of new plus replaced impervious surface is created within the project. The targeted surfaces for flow control on this project are new impervious and pervious surfaces only. Water quality treatment will not be applied to the project because less than 5,000 square feet of Pollution Generating Impervious Surfaces (PGIS) is created within the project. Per KCSWDM, redevelopment projects in a Conservation Flow Control Area that add less than 50% to the existing impervious area do not have to provide flow control and water quality treatment for the replaced surfaces, only the new surfaces.

The proposed land cover conditions are shown in Figure B.1 in Appendix B. This figure provides a delineation of new impervious (PGIS and NPGIS) and pervious surfaces targeted for detention.

4.4 Flow Control System

Drainage from the project area goes to a stormwater trunk line in NE 85th Street that drains to Lake Washington via a constructed drainage network. Since Lake Washington is defined by Ecology as an exempt water body, a direct discharge option was explored for the project in lieu of on-site flow control conducted by Northwest Hydraulic Consultants (NHC), in a separate memorandum cover called, "NE 85th Street Trunk Line Hydraulic Model Development". Preliminary hydrologic and hydraulic modeling of the watershed and trunk line indicated that a more thorough investigation would be required to determine capacity of downstream system. Due to the

size and complexity of the basin and time constraints, the project is not undergoing more thorough investigation into the direct discharge exemption and detention will be provided.

The project triggers flow control requirements. Since the project is in a Conservation Flow Control Area with documented conveyance system issues downstream of the site, it will be required to match historic durations of 50% of the two-year through 50-year peaks in addition to the historic two-year and 10-year peaks. A detention vault has been designed to provide flow control for this added impervious surface. An equivalent area on the south side of the street approximately between STA 12+30 and STA 29+10 will be captured and routed through the conveyance system of 11 catch basins in series. As mentioned in Section 4.2, the total equivalent area upstream will surpass the system's allowable capacity without installing a parallel conveyance system. This will require a flow splitter to split flow rates between the detention vault and the existing conveyance system along NE 85th Street that bypasses the detention vault.

To determine the flow rate splits within the flow splitter, the total contributing area collected by the conveyance system upstream of the flow splitter was divided among two paths: 1.) Runoff directed to the detention vault that consists of the targeted surface area (new impervious surface) and flow-through area. The maximum flow that is allowed to "flow through" the vault is determined by the following rule found in the 2021 KCSWDM on page 1-52: "If the existing 100-year peak flow rate from any upstream area is greater than 50% of the 100-year developed peak flow rate for the area that must be mitigated, then the runoff from the upstream area must bypass the facility". The area captured by the detention vault will include area allowed by this "50 percent rule" to the maximum extent feasible. 2.) The remaining runoff bypasses the vault via existing conveyance system along NE 85th Street. The flow restrictors within the catch basin were configured so that the flow rate generated by the required targeted surfaces plus the flow-through area would enter the vault. The area required for flow control and the flow-through area is identified in Table 4.4.1. with a modeled 50-year flow rate of 1.127 cfs. The total area bypassing the detention vault produces a flow rate of 1.011 cfs. For more detail on the flow splitter calculations, refer to Appendix C.

The vault has been sized using MGSFlood, a continuous flow simulation modeling program. The resulting structure is 84' x 12' x 6' with a capacity of 6,048 CF in 6' of live storage and is located at the southeast corner of the intersection of NE 85th Street and 6th Street, between NE 85th Street and the parking lot near the pedestrian path.

Stormwater Facility	Capture Impervious Area *	50-year Flow Rate	
Targeted Surface Area	0.692 AC	1127 .(.	
Flow through Area (50% rule)	0.336 AC	- 1.127 CTS	
Total Area Bypassing the Detention Vault	0.922 AC	1.011 cfs	
Total Equivalent Area:	1.950 AC		

Table 4.4.1 TDA 1 On-Site Capture Area (Flow Control).

*The Captured Impervious Areas are shown in the Equivalent Area Map in Appendix C

4.5 Water Quality System

Water quality is not required for this project based on the threshold analyses performed.

4.6 Flow Control Best Management Practices (BMPs)

The chosen Flow Control BMP for this project is a detention vault, due primarily to constructability and space concerns that rule out most other options. The vault was modeled with continuous simulation in MGSFlood with 15-minute timesteps. Pre-development landcover, as mentioned above, was assumed as historic conditions, so the pre-development basin was modeled as forested. The post-development basin was modeled as an impervious roadway surface. Also included in both scenarios is flow-through area per the KCSDWM 50% rule stated in section 4.4 (areas shown in the Equivalent Area Map in Appendix C) due to there being more contributing area to the vault than was necessary. This model was then run for multiple iterations until the size of the vault had been optimized while still meeting the Level 2 Flow Control requirement detailed above.

BMP	Category	Feasible (Yes/No)	Explanation
Full Dispersion	1	No	The total pervious landcover is very limited with the presence of steep slopes.
Full Infiltration	2	No	The total pervious landcover is very limited with the presence of steep slopes.
Limited Infiltration	2	No	Infiltration BMPs are infeasible, see the geotechnical report in Appendix F.
Bioretention	2	No	The total pervious landcover is very limited with the presence of steep slopes.
Permeable Pavement	2	No	Steep slopes are present.
Basic Dispersion	3	No	In addition to the presence of steep slopes, the available space within the project area will be developed.
New Pervious			Post construction soil moisture holding capacity shall be protected
Surfaces Moisture	4	Yes	in accordance with King County Code (KCC) 16.82.100 (F) and
Holding Capacity			(G).

Table 4.3.1. Flow Control BMP Feasibility Summary.

5.0 CONVEYANCE SYSTEM ANALYSIS AND DESIGN

The project proposes a piped conveyance system along the south side of NE 85th Street routing runoff westerly toward 6th Street as shown on the Drainage Plans in Appendix E. The new conveyance system will replace the existing system that collects and directs runoff downhill before outfalling into an existing ditch. All connections to the existing catch basins at 6th Street will remain unchanged. The proposed system also includes a proposed detention vault located at the southwest end of the project near 6th Street between NE 85th Street and the existing pedestrian path. Due to proposed conditions, the total contributing area will exceed the system's allowable flow capacity and will require a flow splitter catch basin. Flows will be split between the detention vault and the existing conveyance system that bypasses the detention vault. See Appendix C for additional information for detention vault and flow splitter calculations.

A StormShed3G model has been developed to determine the hydraulic grade line at each structure in the proposed system. The system was broken into three separate modeling layouts, due to the constraints of StormShed3G. The section upstream of the flow splitter was modeled using the Rational Method. While the two downstream sections, discharging from the flow splitter on NE 85th Street were modeled with fixed flow. It was determined that the proposed system has the capacity to convey the 25-year storm, as required by the 2021 King County Surface Water Design Manual, the regulatory manual for this project.

For the portion of the project tributary to the proposed detention vault and the flow splitter, the conveyance modeled in StormShed3G has been used to confirm that the system has adequate capacity to capture and convey the 25-year storm.

The project also includes a proposed piped conveyance system along the south side of NE 85th Street, east of the proposed pedestrian bridge. The new conveyance system will replace the existing system that collects and directs runoff downhill before outfalling into an existing ditch near the CKC.

Conveyance calculations for this analysis can be found in Appendix D of this TIR.

6.0 SPECIAL REPORTS AND STUDIES

A draft geotechnical engineering report was prepared by HWA GeoSciences, Inc. in March 2023. The draft report and field explorations are included in Appendix F of this report.

7.0 OTHER PERMITS

- NEPA
- SEPA
- NPDES

8.0 CSWPP ANALYSIS AND DESIGN

The project plans include site preparation and erosion control plans which show erosion and water pollution control elements. A CSWPPP will be created by the contractor prior to construction. Table 8 below summarizes how erosion and sediment control will likely be addressed during construction of this project; however, it will be up to the Contractor's Erosion and Sediment Control (ESC) Lead to determine the most appropriate BMPs and to ensure they are installed correctly and maintained.

ESC Category	Proposed Measures
Clearing Limits	Silt fencing or high visibility fencing will be placed at the south end of the project site at the clearing limits.
Cover Measures	Fill material will be placed on top of cleared formerly vegetated steep slope to the south of the project to create the pedestrian path. Erosion control nets and blankets or plastic covering should be placed to prevent erosion after clearing occurs, and after filling to prevent sediment transport down the slope.
Perimeter Protection	Silt fence will be installed at the bottom of the fill slope from 85th and around detention vault excavation.
Traffic Area Stabilization	Stabilized construction entrances will be installed at all locations where construction vehicles will be entering and exiting the project site.
Sediment Retention	Storm drain inlet protection will be used at all new and existing catch basins to protect downstream water.
Surface Water Collection	Existing storm drains will be used when possible, but interceptor dikes and swales should be used upstream of the cleared areas to prevent 85th runoff from flowing down the slope.
Dewatering Control	Dewatering may be necessary if groundwater is encountered during construction of drainage facilities.
Dust Control	If dust becomes an issue, the contractor will spray water on exposed soils without creating runoff.
Flow Control	Temporary storage tanks such as Baker Tanks shall be used as needed.
Control Pollutants	The contractor will be required to have a certified erosion and sediment control lead on site. Filtration systems are recommended downstream of temporary storage tanks if necessary. The ESC lead will be required to follow the project Stormwater Pollution Prevention Plan which will address how pollutants will be controlled.
Protect Existing and Proposed Flow Control BMPs	The proposed detention vault will be protected.
Maintain BMPs	Any BMP installed will be maintained at a minimum to the standards outlined in the 2021 KCSWDM.
Manage the Project	The project specifications will call for a certified erosion and sediment control lead to be on-site.

Table 8. Summary of ESC Measures.

9.0 BOND QUANTITIES, FACILITY SUMMARIES, AND DECLARATION OF COVENANT

All proposed facilities will be owned and maintained by the City of Kirkland. No bond will be required.

10.0 OPERATIONS AND MAINTENANCE MANUAL

The City will be responsible for maintaining the drainage components. Items to be maintained include but are not limited to: removing debris and blockages at inlets/grates to storm collection structures; removing sediment accumulation from catch basins, pipes, and storm collection structures; maintaining landscaping; and stabilization of pervious areas.

Maintenance requirements for all proposed stormwater related facilities are included in Appendix G. The proposed drainage system consists of the following elements:

- Catch Basins
- Flow Control Structure
- Flow Splitter Structure
- Storm Drain Pipe
- Detention Vault

APPENDIX A Existing Conditions Figures

VICINITY MAP – FIGURE A.1 TDA LOCATION MAP – FIGURE A.2 NRCS SOILS – FIGURE A.3 CRITICAL AREAS – FIGURE A.4 DOWNSTREAM ROUTE – FIGURE A.5 EXISTING LAND USE – FIGURE A.6 EXISTING DRAINAGE CONDITIONS – FIGURE A.7-A.11 EXISTING IMPERVIOUS AREA MAP – FIGURE A.11-A.14

Date Exported: 6/17/2024 3:15 PM Source: City of Kirkland; King County

Figure A.2

Date Exported: 6/17/2024 3:19 PM Source: City of Kirkland; King County, Natural Resource Conservation Service

Date Exported: 6/17/2024 3:12 PM Source: City of Kirkland; King County, Natural Resource Conservation Service

Date Exported: 6/17/2024 3:10 PM Source: City of Kirkland; King County

	EXISTING PGIS	EXISTING NPGIS	TOTAL IMPERVIOUS	PERVIOUS	TOTAL AREA
PROJECT TOTAL	147,487 SF	15,780 SF	163,267 SF	84,919 SF	248,186 SF

APPENDIX B Proposed Conditions Figures

PROPOSED IMPERVIOUS AREA MAP-FIGURE B.1-B.4

REPLACED	IMPERVIOUS	AND NEW	PERVIOUS	SURFACES
		/		001070020

PLACED IPGIS	NPGIS CONVERTED TO PGIS	TOTAL NEW AND REPLACED IMPERVIOUS	PERVIOUS	TOTAL PROPOSED AREA
,383 SF	40 SF	47,179 SF	1,094 SF	48,273 SF

PROPOSED IMPERVIOUS AREAS

LACED PGIS	NPGIS CONVERTED TO PGIS	TOTAL NEW AND REPLACED IMPERVIOUS	PERVIOUS	TOTAL PROPOSED AREA
383 SF	40 SF	47,179 SF	1,094 SF	48,273 SF

APPENDIX C Flow Control and Water Quality Calculations

DETENTION VAULT AND FLOW SPLITTER CALCULATIONS

801 2nd Avenue, Suite 302 Seattle, WA 98104 P 206-436-0515

Project Number: 20210013

Project Name: Kirkland NE 85th Street Ped and Bike Improvement project

CALCULATION REPORT	
Calculated By: Nathan Hahne, EIT	Date: 12/04/2024
Checked By: Thomas Cheong, PE	Date: 12/04/2024

Calculation Objective:

- Determine a flow splitter design that approximately splits the 50-year flow rate into the detention vault and the existing conveyance system, and also approximately matches at the 2-year, 10-year, and 25-year storms.
- Determine the size of the detention vault facility to satisfy flow control requirement.

Key Design Factors and Assumptions:

- Hydrologic analysis was performed using MGSFlood software, a continuous simulation model, to design the detention vault. WWHM was used as a tool to assist in creating a flow splitter rating table.
- WWHM was performed to create the flow splitter rating table inputs for MGSFlood.
- Rainfall data for the project was obtained from the Extended Timeseries Region Map within the MGSFlood model. Region "Puget East 40" was used for this entire project.
- Level 2 Flow Control (Conservation Flow Control Area) is required, project area in the pre-developed condition will be modeled as forested.
- Pre-developed and Post-developed conditions for flow through and bypass basins will be modeled with the same contributing areas.
- Flow through area is included in the analysis of the detention vault sizing and complies with the WSDOT 50% rule.

Summary of Results:

The project is proposing to abandon the downhill conveyance system at the east end of the project site. Runoff that has previously been directed toward a ditch at the base of the hillside will now be routed along NE 85th street through a proposed conveyance system. The project will also include a detention vault at the west end of the project to detain all of the upstream area, that sheet flows toward the southern gutter line within the project site. The detention vault will be analyzed through the 50% rule, found in the 2021 KCSWDM on page 1-52: "If the existing 100-year peak flow rate from any upstream area is greater than 50% of the 100-year developed peak flow rate for the area that must be mitigated, then the runoff from the upstream area must bypass the facility". If all of the upstream area is captured and directed to the vault, the detention vault will exceed the limitations set by the "50 percent rule". Therefore, in order to detain this project's impacts downstream of the project site, a flow splitter is necessary to route the required project's 100-year flow rate to a detention pond. While the remainder of the flows will bypass the detention vault and connect into the existing conveyance system.

801 2nd Avenue, Suite 302 Seattle, WA 98104 P 206-436-0515

The following land cover was modeled and resulted in the 50-year flow rates directed both into the detention vault and the existing conveyance system. The area captured by the detention vault will utilize the above 50% rule to the maximum extent. See the attachment figures for a depiction of the contributing areas along the project site.

Location	Impervious (Area)	Online/Offline	50-Year flow rate (cfs)	Runoff Flow Direction
Detention Vault + Flow Through	0.692 + 0.336	Offline	1.127	Detention Vault
Existing Conveyance System on NE 85th Street	0.922	Online	1.011	Bypass on NE 85th Street

Table 1. Flow Splitter Land Cover and Flow Rates.

The resulting flow splitter design and stage storage relationship is summarized in Table 2 and Table 3 respectively, below:

Table 2. Flow Splitter Design.

	Ris	er	Orifi	ce l	Orifi	ce 2
Discharges to	Diameter (inches)	Height (feet)	Diameter (inches)	Height (feet)	Diameter (inches)	Height (feet)
Detention Vault	12	2	5.375	0	0.8125	0.95
Existing Conveyance System	12	2	5.0625	0	1.00	0.97

Table 3. Stage Storage of Flow Splitter.

Stage (ft)	Area (Acres)	Storage (ac-ft.)	Discharge 1 (cfs)	Discharge 2 (cfs)
0.000	0.000574	0.000000	0.000	0.000
0.033	0.000574	0.000019	0.143	0.127
0.066	0.000574	0.000038	0.202	0.179
0.100	0.000574	0.000057	0.247	0.219
0.133	0.000574	0.000077	0.286	0.254
0.166	0.000574	0.000096	0.320	0.283
0.200	0.000574	0.000115	0.350	0.311
0.233	0.000574	0.000134	0.378	0.336
0.266	0.000574	0.000153	0.404	0.359
0.300	0.000574	0.000172	0.429	0.380
0.333	0.000574	0.000191	0.452	0.401
0.366	0.000574	0.000210	0.474	0.421
0.400	0.000574	0.000230	0.495	0.439

801 2nd Avenue, Suite 302 Seattle, WA 98104 | P 206-436-0515

Stage (ft)	Area (Acres)	Storage (ac-ft.)	Discharge 1 (cfs)	Discharge 2 (cfs)
0.433	0.000574	0.000249	0.516	0.457
0.466	0.000574	0.000268	0.535	0.475
0.500	0.000574	0.000287	0.554	0.491
0.533	0.000574	0.000306	0.572	0.507
0.566	0.000574	0.000325	0.590	0.523
0.600	0.000574	0.000344	0.607	0.538
0.633	0.000574	0.000363	0.623	0.553
0.666	0.000574	0.000383	0.640	0.567
0.700	0.000574	0.000402	0.655	0.581
0.733	0.000574	0.000421	0.671	0.595
0.766	0.000574	0.000440	0.686	0.609
0.800	0.000574	0.000459	0.701	0.622
0.833	0.000574	0.000478	0.715	0.634
0.866	0.000574	0.000497	0.729	0.647
0.900	0.000574	0.000517	0.743	0.659
0.933	0.000574	0.000536	0.757	0.671
0.966	0.000574	0.000555	0.773	0.683
1.000	0.000574	0.000574	0.788	0.700
1.033	0.000574	0.000593	0.802	0.713
1.066	0.000574	0.000612	0.815	0.726
1.100	0.000574	0.000631	0.829	0.739
1.133	0.000574	0.000650	0.842	0.751
1.166	0.000574	0.000670	0.855	0.763
1.200	0.000574	0.000689	0.867	0.774
1.233	0.000574	0.000708	0.880	0.786
1.266	0.000574	0.000727	0.892	0.797
1.300	0.000574	0.000746	0.904	0.808
1.333	0.000574	0.000765	0.916	0.819
1.366	0.000574	0.000784	0.928	0.830
1.400	0.000574	0.000803	0.939	0.840
1.433	0.000574	0.000823	0.951	0.851
1.466	0.000574	0.000842	0.962	0.861
1.500	0.000574	0.000861	0.973	0.871

801 2nd Avenue, Suite 302 Seattle, WA 98104 | P 206-436-0515

Stage (ft)	Area (Acres)	Storage (ac-ft.)	Discharge 1	Discharge 2
1.533	0.000574	0.000880	0.984	0.881
1.566	0.000574	0.000899	0.995	0.891
1.600	0.000574	0.000918	1.006	0.901
1.633	0.000574	0.000937	1.016	0.910
1.666	0.000574	0.000957	1.027	0.920
1.700	0.000574	0.000976	1.037	0.930
1.733	0.000574	0.000995	1.048	0.939
1.766	0.000574	0.001014	1.058	0.948
1.800	0.000574	0.001033	1.068	0.957
1.833	0.000574	0.001052	1.078	0.966
1.866	0.000574	0.001071	1.088	0.975
1.900	0.000574	0.001090	1.098	0.984
1.933	0.000574	0.001110	1.107	0.993
1.966	0.000574	0.001129	1.117	1.002
2.000	0.000574	0.001148	1.127	1.011
2.033	0.000574	0.001167	1.201	1.084
2.066	0.000574	0.001186	1.328	1.210
2.100	0.000574	0.001205	1.488	1.370
2.133	0.000574	0.001224	1.674	1.554
2.166	0.000574	0.001243	1.877	1.756
2.200	0.000574	0.001263	2.090	1.969
2.233	0.000574	0.001282	2.307	2.184
2.266	0.000574	0.001301	2.519	2.396
2.300	0.000574	0.001320	2.719	2.595
2.333	0.000574	0.001339	2.902	2.777
2.366	0.000574	0.001358	3.062	2.936
2.400	0.000574	0.001377	3.196	3.069
2.433	0.000574	0.001397	3.304	3.177
2.466	0.000574	0.001416	3.391	3.263
2.500	0.000574	0.001435	3.489	3.360
2.533	0.000574	0.001454	3.570	3.441
2.566	0.000574	0.001473	3.649	3.519
2.600	0.000574	0.001492	3.726	3.595

Stage (ft)	Area (Acres)	Storage (ac-ft.)	Discharge 1 (cfs)	Discharge 2 (cfs)
2.633	0.000574	0.001511	3.802	3.670
2.666	0.000574	0.001530	3.875	3.742
2.700	0.000574	0.001550	3.947	3.813
2.733	0.000574	0.001569	4.017	3.883
2.766	0.000574	0.001588	4.086	3.951
2.800	0.000574	0.001607	4.153	4.017
2.833	0.000574	0.001626	4.219	4.082
2.866	0.000574	0.001645	4.284	4.147
2.900	0.000574	0.001664	4.348	4.210
2.933	0.000574	0.001684	4.410	4.272
2.966	0.000574	0.001703	4.472	4.332
3.000	0.000574	0.001722	4.533	4.392

801 2nd Avenue, Suite 302 Seattle, WA 98104 | P 206-436-0515

Discharge 1 and Discharge 2 function proportionally and targets the 50-year flow rate at stage 2.00 feet. Discharge 1 targets the flow rate of 1.127 cfs directed into the detention vault. Discharge 2 targets the flow rate of 1.011 cfs directed into the existing conveyance system.

The resulting detention vault design is summarized in Table 4, below:

Table 4. Detentior	Nault Design
--------------------	--------------

	Pond Dir	mension	Ris	Riser Orifice 1 Orifice 2		Orifice 1		Orifice 1 Orifice 2		Orific	ce 3
	Width (inches)	Length (feet)	Diameter (inches)	Height (feet)	Diameter (inches)	Height (feet)	Diameter (inches)	Height (feet)	Diameter (inches)	Height (feet)	
Ī	12	84	12	6	1.3125	70.76	0.8125	74.60	1.5	76.01	

801 2nd Avenue, Suite 302 Seattle, WA 98104 P 206-436-0515

Precipitation Data:

- Mean Annual precipitation (MAP) = Puget 40 East inches in MAP.
- Note: MAP was also checked using Latitude/Longitude Coordinates (47.6794, -122.1919), inputting the coordinates into MGSFlood software, and verifying precipitation.

Attachments:

- a. MGSFlood Results
- b. Contributing Area Summary
- c. WWHM Flow splitter analysis

FLOW CO	NTROL AREA
	IMPERVIOUS
REQUIRED AREA	0.692 AC
FLOW THROUGH AREA	0.336 AC

IMPERVIOUS	
BYPASS AREA 0.922 AC	

Æ

PERTEET 2707 COLBY AVENUE, SUITE 900 EVERETT, WA 98201 425.252.7700 | 800.615.9900

CITY OF KIRKLAND 228TH-35TH AVE-39TH AVE EQUIVALENT AREA MAP

FLOW CO	NTROL AREA			
	IMPERVIOUS			
REQUIRED AREA	0.692 AC			
FLOW THROUGH AREA	0.336 AC			
BYPASS AREA				

BYPASS AREA	0.922 AC

CITY OF KIRKLAND 228TH-35TH AVE-39TH AVE EQUIVALENT AREA MAP

EQUIVALENT AREA MAP

CITY OF KIRKLAND 228TH-35TH AVE-39TH AVE EQUIVALENT AREA MAP

MGS FLOOD PROJECT REPORT

Program Version: MGSFlood 4.57 Program License Number: 200310001 Project Simulation Performed on: 12/04/2024 3:47 PM Report Generation Date: 12/04/2024 3:48 PM

Input File Name:	DetentionVault_FlowThrough_50-yr_match.fld
Project Name:	Kirkland 85th Ped/Bike
Analysis Title:	Detention Vault Modeling
Comments:	Detention vault with flow splitter
	PRECIPITATION INPUT

Computational Time Step (Minutes): 15

Extended Precipitation Time Series Selected Climatic Region Number: 15

Full Period of Record Available used for RoutingPrecipitation Station :96004005 Puget East 40 in_5min 10/01/1939-10/01/2097Evaporation Station :961040 Puget East 40 in MAPEvaporation Scale Factor :0.750

HSPF Parameter Region Number:1HSPF Parameter Region NameEcology Default

Predevelopment/Post Development Tributary Area Summary

	Predeveloped	Post Developed
Total Subbasin Area (acres)	1.950	1.950
Area of Links that Include Precip/Evap (acres)	0.000	0.000
Total (acres)	1.950	1.950

-----SCENARIO: PREDEVELOPED

Number of Subbasins: 3

Subbasin	: Proj. Area
	Area (Acres)
C, Forest, Mod	0.692
Subbasin Total	0.602
Subbasiii 10tai	0.032

------ Subbasin : Flow Through ------------ Area (Acres) ------ROADS/MOD 0.261 SIDEWALKS/MOD 0.075

Subbasin Total 0.336

Subbasin : Bypassbasin				
	Area (Acres)			
ROADS/MOD	0.506			
SIDEWALKS/MOD	0.416			

Subbasin Total 0.922

-----SCENARIO: POSTDEVELOPED

Number of Subbasins: 3

------ Subbasin : Proj, Area Postdevelopment -----------Area (Acres) ------ROADS/MOD 0.533 SIDEWALKS/MOD 0.159 _____ Subbasin Total 0.692 ------ Subbasin : Flow Through -----------Area (Acres) ------ROADS/MOD 0.261 SIDEWALKS/MOD 0.075 Subbasin Total 0.336

----- Subbasin : Bypass ------

-----SCENARIO: PREDEVELOPED Number of Links: 2

Link Name: POC Link Type: Copy Downstream Link: None

Link Name: Bypass

Link Type: Copy Downstream Link: None

-----SCENARIO: POSTDEVELOPED Number of Links: 4

Link Name: Detention Vault

Link Type: Structure Downstream Link: None

Prismatic Pond Option Used					
Pond Floor Elevation (ft)	:	100.00			
Riser Crest Elevation (ft)		:	106.00		
Max Pond Elevation (ft)	:	106.50			
Storage Depth (ft)	:	6.00			
Pond Bottom Length (ft)	:	84.0			
Pond Bottom Width (ft)	:	12.0			
Pond Side Slopes (ft/ft)	: Z	1= 0.00	Z2= 0.00	Z3= 0.00	Z4= 0.00
Bottom Area (sq-ft)	:	1008.			
Area at Riser Crest El (sq-ft)	:	1,008.			
(acres)	:	0.023			
Volume at Riser Crest (cu-ft)	:	6,048.			
(ac-ft)	:	0.139			
Area at Max Elevation (sq-ft)	:	1008.			
(acres)	:	0.023			
Vol at Max Elevation (cu-ft)	:	6,552.			
(ac-ft)	:	0.150			
Hydraulic Conductivity (in/hr)	:	0.00			
Hydraulic Conductivity (in/hr)	:	0.150			

Massmann Regression Used to Estimate Hydralic Gradient Depth to Water Table (ft) : 100.00 Bio-Fouling Potential : Low Maintenance : Average or Better Riser Geometry Riser Structure Type : Circular Riser Diameter (in) : 18.00 Common Length (ft): 18.00Riser Crest Elevation: 106.00 ft Hydraulic Structure Geometry 3 Number of Devices: ---Device Number 1 ---: Circular Orifice Device Type Control Elevation (ft) : 100.00 Diameter (in) : 1.25 Orientation : Horizontal Elbow : No ---Device Number 2 ---Device Type : Circular Orifice Control Elevation (ft) : 103.50 Diameter (in) : 0.8125 Orientation : Horizontal Elbow : Yes ---Device Number 3 ---Device Type : Circular Orifice Control Elevation (ft) : 105.25 Diameter (in) : 1.50 Orientation : Horizontal Elbow : Yes -----

Link Name: Bypass

Link Type: Copy Downstream Link: None

Link Name: Flow Splitter

Link Type: Flow Splitter

Outflow 1 Connected to Link: Lnk3 - Detention Vault Outflow 2 Connected to Link: Lnk2 - Bypass

Splitter Ratir	ng Table		
Inflow	Outflow 1	Ouflow 2	
(cfs)	(cfs)	(cfs)	
0.000	0.000	0.000	
0.270	0.143	0.127	

0.381	0.202	0.179
0.466	0.247	0.219
0.603	0.320	0.283
0.661	0.350	0.311
0.714	0.378	0.336
0.763	0.404	0.359
0.853	0.452	0.401
0.895	0.474	0.421
0.934	0.495	0.439
0.973	0.516	0.457
1.010	0.535	0.475
1.045	0.554	0.491
1.113	0.590	0.523
1.145	0.607	0.538
1.176	0.623	0.553
1.207	0.640	0.567
1.230	0.655	0.501
1.295	0.686	0.609
1.323	0.701	0.622
1.349	0.715	0.634
1.376	0.729	0.647
1.402	0.743	0.671
1.456	0.773	0.683
1.488	0.788	0.700
1.515	0.802	0.713
1.541	0.815	0.726
1.593	0.842	0.751
1.618	0.855	0.763
1.641	0.867	0.774
1.660	0.880	0.786
1.712	0.904	0.808
1.735	0.916	0.819
1.758	0.928	0.830
1.779	0.939	0.840
1.823	0.951	0.851
1.844	0.973	0.871
1.865	0.984	0.881
1.886	0.995	0.891
1.907	1.006	0.901
1.947	1.010	0.920
1.967	1.037	0.930
1.987	1.048	0.939
2.006	1.058	0.948
2.025	1.078	0.957
2.063	1.088	0.975
2.082	1.098	0.984

2.100	1.107	0.993
2.119	1.117	1.002
2.138	1.127	1.011
2.285	1.201	1.084
2.538	1.328	1.210
2.858	1.488	1.370
3.228	1.674	1.554
3.633	1.877	1.756
4.059	2.090	1.969
4.491	2.307	2.184
4.915	2.519	2.396
5.314	2.719	2.595
5.679	2.902	2.777
5.998	3.062	2.936
6.265	3.196	3.069
6.481	3.304	3.177
6.654	3.391	3.263
6.849	3.489	3.360
7.011	3.570	3.441
7.168	3.649	3.519
7.321	3.726	3.595
7.472	3.802	3.670
7.617	3.875	3.742
7.760	3.947	3.813
7.900	4.017	3.883
8.037	4.086	3.951
8.170	4.153	4.017
8.301	4.219	4.082
8.431	4.284	4.147
8.558	4.348	4.210
8.682	4.410	4.272
8.804	4.4/2	4.332
8.925	4.533	4.392
9.045	4.593	4.452

(Targeting the 50-year flow rate at Stage 2.00 feet)

Link Name: Vault Link

Link Type: Copy Downstream Link Name: Flow Splitter

-----SCENARIO: PREDEVELOPED Number of Subbasins: 3 Number of Links: 2

********** Subbasin: Proj. Area **********

3.238E-02
4.106E-02
5.240E-02
5.678E-02
8.838E-02
0.131

*********** Subbasin: Flow Through **********

Flood Frequency Data(cfs) (Recurrence Interval Computed Using Gringorten Plotting Position) Tr (yrs) Flood Peak (cfs)

2-Year	0.154	
5-Year	0.207	
10-Year	0.260	
25-Year	0.333	
50-Year	0.368	
100-Year	0.490	
200-Year	0.551	
500-Year	0.630	

********** Subbasin: Bypassbasin **********

	0.120
5-Year	0.567
10-Year	0.715
25-Year	0.913
50-Year	1.011
100-Year	1.346
200-Year	1.513
500-Year	1.729

********** Link:	POC	*******	Link Inflow
Frequency Sta	ats		
Flood Freque	ency Data(cfs)		
(Recurrence	Interval Computed Using Gringorten Plotting Position)		
Tr (yrs)	Flood Peak (cfs)		
=======================================			
2-Year	0.164		
5-Year	0.221		
10-Year	0.268		
25-Year	0.336		
50-Year	0.412		
100-Year	0.499		

200-Year 0.555

500-Year 0.629

********** Link: Bypass ******* Link Outflow 1 Frequency Stats Flood Frequency Data(cfs) (Recurrence Interval Computed Using Gringorten Plotting Position) Tr (yrs) Flood Peak (cfs) ------2-Year 0.423 5-Year 0.567 10-Year 0.715 25-Year 0.913 50-Year 1.011 100-Year 1.346

200-Year

500-Year

1.513

1.729

-----SCENARIO: POSTDEVELOPED Number of Subbasins: 3 Number of Links: 4

********** Subbasin: Proj, Area Postdevelopment **********

Flood Frequency Data(cfs)

(Recurrence Interval Computed Using Gringorten Plotting Position)

Tr (yrs) Flood Peak (cfs)

==========	=======================================	
2-Year	0.318	
5-Year	0.425	
10-Year	0.536	
25-Year	0.685	
50-Year	0.759	50% Rule Check
100-Year	1.010	100 year Undetained Flow Pate from Area Receiving Flow Control
200-Year	1.136	Too-year onderanned ritow hate norm Area Necewing ritow Control.
500-Year	1.298	

*********** Subbasin: Flow Through **********

Flood Frequency Data(cfs)

(Recurrence Interval Computed Using Gringorten Plotting Position)

Tr (yrs) Flood Peak (cfs)

2-Year 5-Year	0.154 0.207	
10-Year 25-Year	0.260 0.333	50% Rule Check
50-Year	0.368	100-year Undetained Flow Rate from Flow Through Area
100-Year	<mark>0.490</mark> ◀	
200-Year 500-Year	0.551 0.630	<50% of the Undetained Flow Rate from Area Receiving Flow Control = PASSES 50% RULE (0.490 cfs < 1.010 cfs)

*********** Subbasin: Bypass **********

Flood Frequency Data(cfs) (Recurrence Interval Computed Using Gringorten Plotting Position) Tr (yrs) Flood Peak (cfs)

2-Year	0.423
5-Year	0.567
10-Year	0.715
25-Year	0.913
50-Year	1.011
100-Year	1.346
200-Year	1.513
500-Year	1.729

********** Link:	Bypass
Outflow 1 Freq	uency Stats
Flood Freque	ncy Data(cfs)
(Recurrence I	nterval Computed Using Gringorten Plotting Position)
Tr (yrs)	Flood Peak (cfs)

200-Year

500-Year

1.687

1.928

2-Voar	0 421	
5-Year	0.563	Flow Splitter Check
10-Year	0.711	Actual flows to bypass to existing conveyance system to match the
25-fear 50-Year	1.012	targeted 50-year flow rate (1.011 cfs) from the Subbasin: Bypass.
100-Year	1.364	(Note: The small difference between the actual and targeted flow
200-Year 500-Year	1.541 1 768	rate is considered negligible)

Link

********** Link	: Vault Link	********* Link
Inflow Freque Flood Freque (Recurrence	ency Stats ency Data(cfs) Interval Computed	sing Gringorten Plotting Position)
Tr (yrs)	Flood Peak (cfs)	
2-Year	0.472	
5-rear 10-Year 25-Year	0.632 0.797 1.018	Flow Splitter Check
<mark>50-Year</mark> 100-Year	<mark>1.127</mark> ◀ 1.501	low rate $(0.759 \text{ cfs} + 0.368 \text{ cfs} = 1.127 \text{ cfs})$ from the Subbasin: Proj.

Area Postdeveloped and Subbasin: Flow Through.

********** Link: Inflow Freque Flood Freque (Recurrence	: Flow Splitter ency Stats ency Data(cfs) Interval Computed	l Using Gringorten Plotting Position)	*****	Link
Tr (yrs)	Flood Peak (cfs)			
2-Year 5-Year 10-Year 25 Year	0.895 1.199 1.512			
50-Year	1.931 2.138 ◀	Flow Splitter inflow from upstream	n conveyanc	e system
100-Year 200-Year 500-Year	2.846 3.201 3.657			

********* Link

*********** Link: Detention Vault WSEL Stats WSEL Frequency Data(ft) (Recurrence Interval Computed Using Gringorten Plotting Position) WSEL Peak (ft) Tr (yrs) 1.05-Year 101.949 1.11-Year 102.113 1.25-Year 102.417 2.00-Year 103.098 3.33-Year 103.700 5-Year 104.214 10-Year 104.959 25-Year 106.005 50-Year 106.048

100-Year 106.058

*********Groundwater Recharge Summary ************

Recharge is computed as input to PerInd Groundwater Plus Infiltration in Structures

Total Predeveloped Recharge During Simulation Model Element Recharge Amount (ac-ft) Subbasin: Proj. Area 119.351 Subbasin: Flow Through 0.000 Subbasin: Bypassbasin 0.000 POC 0.000 Link: Link: Bypass 0.000 Total: 119.351 **Total Post Developed Recharge During Simulation** Model Element Recharge Amount (ac-ft) Subbasin: Proj, Area Postdevel 0.000 Subbasin: Flow Through 0.000 Subbasin: Bypass 0.000 Link: Detention Vault 0.000 Link: Bypass 0.000 Flow Splitter Link: 0.000 Link: Vault Link 0.000 Total: 0.000 **Total Predevelopment Recharge is Greater than Post Developed** Average Recharge Per Year, (Number of Years= 158) Predeveloped: 0.755 ac-ft/year, Post Developed: 0.000 ac-ft/year -----SCENARIO: PREDEVELOPED Number of Links: 2 ********** Link: POC 2-Year Discharge Rate : 0.164 cfs 15-Minute Timestep, Water Quality Treatment Design Discharge On-line Design Discharge Rate (91% Exceedance): 0.05 cfs Off-line Design Discharge Rate (91% Exceedance): 0.03 cfs Infiltration/Filtration Statistics------Inflow Volume (ac-ft): 214.73 Inflow Volume Including PPT-Evap (ac-ft): 214.73 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Primary Outflow To Downstream System (ac-ft): 214.73 Secondary Outflow To Downstream System (ac-ft): 0.00 Volume Lost to ET (ac-ft): 0.00 Percent Treated (Infiltrated+Filtered+ET)/Total Volume: 0.00%

********** Link: Bypass

2-Year Discharge Rate : 0.423 cfs

15-Minute Timestep, Water Quality Treatment Design Discharge On-line Design Discharge Rate (91% Exceedance): 0.15 cfs Off-line Design Discharge Rate (91% Exceedance): 0.08 cfs

Infiltration/Filtration Statistics------Inflow Volume (ac-ft): 416.29 Inflow Volume Including PPT-Evap (ac-ft): 416.29 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Primary Outflow To Downstream System (ac-ft): 416.29 Secondary Outflow To Downstream System (ac-ft): 0.00 Volume Lost to ET (ac-ft): 0.00 Percent Treated (Infiltrated+Filtered+ET)/Total Volume: 0.00%

-----SCENARIO: POSTDEVELOPED

Number of Links: 4

*********** Link: Detention Vault

Basic Wet Pond Volume (91% Exceedance): 4566. cu-ft Computed Large Wet Pond Volume, 1.5*Basic Volume: 6848. cu-ft

2-Year Discharge Rate : 0.073 cfs

15-Minute Timestep, Water Quality Treatment Design Discharge On-line Design Discharge Rate (91% Exceedance): 0.17 cfs Off-line Design Discharge Rate (91% Exceedance): 0.09 cfs

Infiltration/Filtration Statistics------Inflow Volume (ac-ft): 466.34 Inflow Volume Including PPT-Evap (ac-ft): 466.34 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Primary Outflow To Downstream System (ac-ft): 466.34 Secondary Outflow To Downstream System (ac-ft): 0.00 Volume Lost to ET (ac-ft): 0.00 Percent Treated (Infiltrated+Filtered+ET)/Total Volume: 0.00%

********** Link: Bypass

2-Year Discharge Rate : 0.421 cfs

15-Minute Timestep, Water Quality Treatment Design Discharge On-line Design Discharge Rate (91% Exceedance): 0.15 cfs Off-line Design Discharge Rate (91% Exceedance): 0.08 cfs *******

Infiltration/Filtration Statistics------Inflow Volume (ac-ft): 414.10 Inflow Volume Including PPT-Evap (ac-ft): 414.10 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Primary Outflow To Downstream System (ac-ft): 414.10 Secondary Outflow To Downstream System (ac-ft): 0.00 Volume Lost to ET (ac-ft): 0.00 Percent Treated (Infiltrated+Filtered+ET)/Total Volume: 0.00%

*********** Link: Flow Splitter

2-Year Discharge Rate : 0.474 cfs

15-Minute Timestep, Water Quality Treatment Design Discharge On-line Design Discharge Rate (91% Exceedance): 0.32 cfs Off-line Design Discharge Rate (91% Exceedance): 0.18 cfs

Infiltration/Filtration Statistics------Inflow Volume (ac-ft): 880.44 Inflow Volume Including PPT-Evap (ac-ft): 880.44 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Primary Outflow To Downstream System (ac-ft): 466.34 Secondary Outflow To Downstream System (ac-ft): 414.10 Volume Lost to ET (ac-ft): 0.00 Percent Treated (Infiltrated+Filtered+ET)/Total Volume: 0.00%

********** Link: Vault Link

2-Year Discharge Rate : 0.472 cfs

15-Minute Timestep, Water Quality Treatment Design Discharge On-line Design Discharge Rate (91% Exceedance): 0.17 cfs Off-line Design Discharge Rate (91% Exceedance): 0.09 cfs

Infiltration/Filtration Statistics------Inflow Volume (ac-ft): 464.15 Inflow Volume Including PPT-Evap (ac-ft): 464.15 Total Runoff Infiltrated (ac-ft): 0.00, 0.00% Total Runoff Filtered (ac-ft): 0.00, 0.00% Primary Outflow To Downstream System (ac-ft): 464.15 Secondary Outflow To Downstream System (ac-ft): 0.00 Volume Lost to ET (ac-ft): 0.00 Percent Treated (Infiltrated+Filtered+ET)/Total Volume: 0.00% ******

**********Compliance Point Results **************

Scenario Predeveloped Compliance Link: POC Scenario Postdeveloped Compliance Link: Detention Vault

*** Point of Compliance Flow Frequency Data ***

Recurrence Interval Computed Using Gringorten Plotting Position

velopment Runoff Discharge (cfs)	Postdevelopr Tr (Years) Discł	nent Runoff harge (cfs)	
0.164	2-Year	7.339E-02	
0.221	5-Year	9.975E-02	
0.268	10-Year	0.113	
0.336	25-Year	0.194	
0.412	50-Year	0.350	
0.499	100-Year	0.405	
0.555	200-Year	0.439	
0.629	500-Year	0.484	
	velopment Runoff Discharge (cfs) 0.164 0.221 0.268 0.336 0.412 0.499 0.555 0.629	velopment Runoff Postdevelopr Discharge (cfs) Tr (Years) Disch 0.164 2-Year 0.221 5-Year 0.268 10-Year 0.336 25-Year 0.412 50-Year 0.499 100-Year 0.555 200-Year 0.629 500-Year	velopment Runoff Postdevelopment Runoff Discharge (cfs) Tr (Years) Discharge (cfs) 0.164 2-Year 7.339E-02 0.221 5-Year 9.975E-02 0.268 10-Year 0.113 0.336 25-Year 0.194 0.412 50-Year 0.350 0.499 100-Year 0.405 0.555 200-Year 0.439 0.629 500-Year 0.484

** Record too Short to Compute Peak Discharge for These Recurrence Intervals

**** Flow Duration Performance ****

Excursion at Predeveloped 50%Q2 (Must be Less Than or Equal to 0%):	-9.1%	PASS
Maximum Excursion from 50%Q2 to Q2 (Must be Less Than or Equal to 0%):	-3.9%	PASS
Maximum Excursion from Q2 to Q50 (Must be less than 10%):	0.0%	PASS
Percent Excursion from Q2 to Q50 (Must be less than 50%):	0.0%	PASS

MEETS ALL FLOW DURATION DESIGN CRITERIA: PASS

APPENDIX D Conveyance Calculations

CALCULATION REPORT

Calculated By: Nathan Hahne, EIT Date: 1/7/2025

Checked By: Thomas Cheong, PE Date: 1/7/2025

Conveyance Calculations: NE 85th Street (Upstream Conveyance from Flow Splitter)

Objective:

To analyze the hydraulic grade line and check conveyance capacity in the 25-year storm event of the proposed system tributary to the flow splitter.

Key Design Factors and Assumptions:

- Stormshed 3G model is used for analyzing the system.
- Minimum Time of Concentration (TC) is set to 6.30 minutes at the upstream end.
- Smooth wall pipe with manning's coefficients of 0.012 is used for this analysis.
- "Max El" corresponds to rim elevation at the structure or pipe crown.
- "Start El" corresponds to the lowest pipe invert in a particular structure or outfall elevation.
- StormShed3G is used to analyzed for a 25-year storm event using the fixed flow rate. 25-year storm event developed from calculations from the Rational Method equations as found in the 2021 King County Surface Water Design Manual. See fixed flow rate tables in the section for "Contributing Drainage Areas".
- Tailwater is set to the crown of the 12" outfall pipe from structure CB #103.

Summary of Results:

Hydrologic Flow Rates

Event Frequency	Flow Rate (CFS)
2-Year	1.75
10-Year	3.75
25-Year	4.58
100-Year	5.39

Nodes and Flow Rates

Appended on: Tuesday, January 7, 2025 11:15:53 AM

ROUTEHYD [] THRU [85th Conveyance System] USING [25 year] AND [] NOTZERO RELATIVE Fixed Flow

Gravity Analysis using fixed flowrates

Reach ID	Flow (cfs)	Full Q (cfs)	Full ratio	nDepth (ft)	Size	nVel (ft/s)	fVel (ft/s)	CFlow
P114	1.421	10.0787	0.141	0.2534	12 in Diam	9.0818	12.8326	1.421
P113	1.633	9.7985	0.1667	0.2758	12 in Diam	9.267	12.4759	0.212
P112	1.826	9.5605	0.191	0.2962	12 in Diam	9.3775	12.1728	0.193
P111	2.137	9.805	0.2179	0.3173	12 in Diam	9.9777	12.4841	0.311
P110	2.435	9.8294	0.2477	0.339	12 in Diam	10.3813	12.5151	0.298
P109	2.73	9.7907	0.2788	0.3611	12 in Diam	10.6792	12.4658	0.295
P108	3.16	9.9057	0.319	0.386	12 in Diam	11.2962	12.6123	0.43
P107	3.557	10.0605	0.3536	0.4104	12 in Diam	11.7158	12.8094	0.397
P106	3.845	10.1323	0.3795	0.4273	12 in Diam	12.0059	12.9008	0.288
P105	4.221	10.3031	0.4097	0.446	12 in Diam	12.4577	13.1183	0.376
P104	4.581	14.1192	0.3245	0.3887	12 in Diam	16.2284	17.9771	0.36

HGL Analysis

From Node	To Node	HG EI (ft)	App (ft)	Bend (ft)	Junct Loss (ft)	Adjusted HG EI (ft)	Max El (ft)
							93.78
CB104	CB103	96.3366		0.0025		96.3391	97.9800
CB105	CB104	101.8130		0.0158		101.8289	103.6400
CB106	CB105	108.9278		0.0076		108.9354	110.9400
CB107	CB106	117.7462		0.0054		117.7516	119.8600
CB108	CB107	127.8386		0.0045		127.8430	130.0800
CB109	CB108	136.1576		0.0009		136.1585	138.5600
CB110	CB109	145.2270		0.0006		145.2275	147.7100
CB111	CB110	152.6466		0.0079		152.6545	155.2400
CB112	CB111	159.6936		0.0093		159.7029	162.3700
CB113	CB112	164.6329		0.0561		164.6890	167.3700
CB114	CB113	169.8549				169.8549	172.5600

Reach	HW Depth (ft)	HW/D ratio	$Q\left(cfs ight)$	TW Depth (ft)	Dc (ft)	Dn (ft)	Comment
P104	1.8266	1.8266	4.58	1.0000	0.8921	0.3887	SuperCrit flow, Inlet end controls
P105	1.6330	1.6330	4.22	1.8291	0.8660	0.4460	SuperCrit flow, Inlet end controls
P106	1.4878	1.4878	3.85	1.4489	0.8336	0.4273	SuperCrit flow, Inlet end controls
P107	1.3862	1.3862	3.56	1.4954	0.8054	0.4104	SuperCrit flow, Inlet end controls
P108	1.2586	1.2586	3.16	1.3916	0.7619	0.3860	SuperCrit flow, Inlet end controls
P109	1.0976	1.0976	2.73	1.1630	0.7085	0.3611	SuperCrit flow, Inlet end controls
P110	1.0070	1.0070	2.44	1.0985	0.6685	0.3390	SuperCrit flow, Inlet end controls
P111	0.9166	0.9166	2.14	1.0075	0.6247	0.3173	SuperCrit flow, Inlet end controls
P112	0.8236	0.8236	1.83	0.9245	0.5757	0.2962	SuperCrit flow, Inlet end controls
P113	0.7629	0.7629	1.63	0.8329	0.5429	0.2758	SuperCrit flow, Inlet end controls
P114	0.6949	0.6949	1.42	0.8190	0.5048	0.2534	SuperCrit flow, Inlet end controls

Conduit Notes

Reach Records

Record Id: P104

Section Shape:		Circu	ılar			
Uniform Flow Method: Mai		Man	ning's	Coefficient:	Coefficient:	
Routing Method:		Trav	el Time Shift	Contributing Hyd		
DnNode		CB10)3	UpNode		CB104
Material		unsp	ecified	Size		12 in Diam
Ent Losses						
Length		13.00	0 ft	Slope	13.31%	
Up Invert		94.5	il ft	Dn Invert		92.78 ft
Conduit Constrain	nts					
Min Vel	Max Vel		Min Slope	Max Slope	Min (Cover
2.00 ft/s 15.00 ft/s			0.50%	2.00%	3.00) ft
Drop across MH 0.0) ft	Ex/Infil Rate		0.00 in/hr

Section Shape:		Circu	ular			
Uniform Flow Method:			ning's	Coefficient:		0.012
Routing Method:		Trav	el Time Shift	Contributing Hyd		
DnNode		CB10)4	UpNode		CB105
Material		unsp	ecified	Size		12 in Diam
Ent Losses						
Length		80.0)O ft	Slope	Slope 7.09%	
Up Invert		100.	18 ft	Dn Invert		94.51 ft
Conduit Constrain	its					
Min Vel	Max Vel		Min Slope	Max Slope	Min (Cover
2.00 ft/s 15.00 ft/s			0.50%	2.00%	3.00) ft
Drop across MH 0.0) ft	Ex/Infil Rate		0.00 in/hr

Section Shape:			ular				
Uniform Flow Method:		Man	ning's		Coefficient:		0.012
Routing Method:		Trav	el Time Shift	C	Contributing Hyd	l	
DnNode		CB10)5	l	UpNode		CB106
Material		unsp	ecified		Size		12 in Diam
Ent Losses Groove En			ove End w/Head	lwall			
Length		103.	00 ft		Slope 6.85%		6.85%
Up Invert		107.4	44 ft]	Dn Invert		100.38 ft
Conduit Constrain	nts						
Min Vel	Max Vel		Min Slope	N	/lax Slope	Min	Cover
2.00 ft/s 15.00 ft/s		0.50%	2	2.00%	3.00) ft	
Drop across MH) ft	E	Ex/Infil Rate		0.00 in/hr

Record Id: P106

Section Shape:	-					
Uniform Flow Method:			ning's	Coefficient:		0.012
Routing Method:		Trav	el Time Shift	Contributing Hyd		
DnNode		CB10	06	UpNode		CB107
Material		unsp	ecified	Size		12 in Diam
Ent Losses		ove End w/Headwall				
Length		132.0	DO ft	Slope		6.76%
Up Invert		116.3	6 ft	Dn Invert		107.44 ft
Conduit Constrair	nts					
Min Vel	Max Vel		Min Slope	Max Slope	Min (Cover
2.00 ft/s 15.00 ft/s			0.50%	2.00%	3.00	ft
Drop across MH () ft	Ex/Infil Rate	0.00 in/hr	

Section Shape:		Circu	lar					
Uniform Flow Method:		Mann	ning's	Co	pefficient:		0.012	
Routing Method:		Trave	el Time Shift	Co	ontributing Hy	d		
DnNode		CB10	7	U	pNode		CB108	
Material		unspe	ecified	Si	ze		12 in Diam	
Ent Losses		Groov	ve End w/Head	wall				
Length		156.0	0 ft	SI	Slope		6.55%	
Up Invert		126.5	8 ft	Dı	n Invert		116.36 ft	
Conduit Constra	ints							
Min Vel	Max Vel		Min Slope	Mo	ax Slope	Min	Cover	
2.00 ft/s	15.00 ft/s		0.50%	2.0	0%	3.00 ft		
Drop across MH		0.00	ft	Ex	/Infil Rate		0.00 in/hr	

Record Id: P108

Section Shape:						
Uniform Flow Method:			ning's	Coefficient:		0.012
Routing Method:		Trav	el Time Shift	Contributing Hyd		
DnNode		CB10)8	UpNode		CB109
Material		unsp	ecified	Size		12 in Diam
Ent Losses Groove End w/Hea						
Length		131.C)O ft	Slope 6		6.40%
Up Invert		135.0	D6 ft	Dn Invert		126.68 ft
Conduit Constrain	nts					
Min Vel	Max Vel		Min Slope	Max Slope	Min (Cover
2.00 ft/s 15.00 ft/s			0.50%	2.00%	3.00	ft
Drop across MH C) ft	Ex/Infil Rate		0.00 in/hr

Section Shape: Circular						
Uniform Flow Method:		Manning's		Coefficient:	Coefficient:	
Routing Method:		Trav	el Time Shift	Contributing Hyd		
DnNode		CB10)9	UpNode		CB110
Material		unsp	ecified	Size	Size	
Ent Losses Groove End w/Headwall						
Length		142.0	00 ft	Slope		6.45%
Up Invert		144.22 ft Dn Invert			135.06 ft	
Conduit Constrain	ts					
Min Vel	el Max Vel		Min Slope	Max Slope	Min (Cover
2.00 ft/s	15.00 ft/s		0.50%	2.00%	3.00	ft
Drop across MH		0.00 ft		Ex/Infil Rate		0.00 in/hr

Record Id: P110

Section Shape: Circular		ılar				
Uniform Flow Method:		Manning's		Coefficient:	Coefficient:	
Routing Method:		Trav	el Time Shift	Contributing Hyd		
DnNode		CB110		UpNode	UpNode	
Material unsp		ecified	Size	Size		
Ent Losses Groove End w/Headwall						
Length		117.00 ft Slope			6.42%	
Up Invert		151.7	51.73 ft Dn Invert			144.22 ft
Conduit Constrain	its					
Min Vel	Max Vel		Min Slope	Max Slope	Min (Cover
2.00 ft/s	15.00 ft/s		0.50%	2.00%	3.00) ft
Drop across MH (0.00) ft	Ex/Infil Rate		0.00 in/hr

Section Shape:	Section Shape:		ular			
Uniform Flow Meth	Uniform Flow Method:		ning's	Coefficient:		0.012
Routing Method:		Trav	el Time Shift	Contributing Hyd		
DnNode		CB11	1	UpNode	UpNode	
Material		unsp	ecified	Size		12 in Diam
Ent Losses Groove End w/Headwall						
Length		117.0)O ft	Slope		6.10%
Up Invert		158.8	87 f i	Dn Invert		151.73 ft
Conduit Constrain	nts					
Min Vel	Max Vel		Min Slope	Max Slope	Min (Cover
2.00 ft/s	15.00 ft/s		0.50%	2.00%	3.00	ft
Drop across MH		0.00 ft		Ex/Infil Rate		0.00 in/hr

Record Id: P112

Section Shape: Circular						
Uniform Flow Method:		Manning's		Coefficient:		0.012
Routing Method:		Trav	el Time Shift	Contributing Hyd	Contributing Hyd	
DnNode		CB11	2	UpNode	UpNode	
Material	Material unsp		ecified	Size	Size	
Ent Losses Groove End w/Headwall			l			
Length		78.0	0 ft	Slope	Slope	
Up Invert		163.8	87 ft	Dn Invert	Dn Invert	
Conduit Constrair	nts					
Min Vel	Max Vel		Min Slope	Max Slope	Min	Cover
2.00 ft/s	15.00 ft/s		0.50%	2.00%	3.00) ft
Drop across MH C		0.00) ft	Ex/Infil Rate		0.00 in/hr

Record Ic	d: P114
-----------	---------

Section Shape:		Circu	ılar				
Uniform Flow Method:		Manning's		Coefficient:		0.012	
Routing Method:		Trav	el Time Shift		Contributing Hyc		
DnNode		CB11	3		UpNode		CB114
Material		unsp	ecified		Size		12 in Diam
Ent Losses Groove End w/Headwall			llawt				
Length		78.00 ft		Slope		6.78%	
Up Invert		169.16 ft Dn Invert			163.87 ft		
Conduit Constrain	ts						
Min Vel	Max Vel		Min Slope		Max Slope	Min (Cover
2.00 ft/s	15.00 ft/s		0.50%		2.00%	3.00	ft
Drop across MH 0		0.00) ft		Ex/Infil Rate		0.00 in/hr

Node Records

Record Id: CB103

Descrip:	Flow Splitter	Increment	0.10 ft		
Start El.	92.78 ft	Max El.	97.79 ft		
Void Ratio	100.00				
Condition	Proposed	Structure Type	CB-TYPE 272		
		Channelization	No Special Shape		
Catch	0.00 ft	Bottom Area	28.274 sf		
MH/CB Type Node					

Record Id: CB104

Descrip:		Increment	0.10 ft		
Start El.	94.51 ft	Max El.	97.98 ft		
Void Ratio	100.00				
Condition	Proposed	Structure Type	CB-TYPE 1		
		Channelization	No Special Shape		
Catch	0.00 ft	Bottom Area	3.97 sf		
MH/CB Type Node					

Descrip:		Increment	0.10 ft	
Start El.	100.18 ft	Max El.	103.64 ft	
Void Ratio	100.00			
Condition	Proposed	Structure Type	CB-TYPE 1	
		Channelization	No Special Shape	
Catch	0.00 ft	Bottom Area	3.97 sf	
MH/CB Type Node				

Record Id: CB106

Descrip:		Increment	0.10 ft	
Start El.	107.44 ft	Max El.	110.94 ft	
Void Ratio	100.00			
Condition	Proposed	Structure Type	CB-TYPE 1	
		Channelization	No Special Shape	
Catch	0.00 ft	Bottom Area	3.97 sf	
MH/CB Type Node				

Record Id: CB107

Descrip:		Increment	0.10 ft		
Start El.	116.36 ft	Max El.	119.86 ft		
Void Ratio	100.00				
Condition	Proposed	Structure Type	CB-TYPE 1		
		Channelization	No Special Shape		
Catch	0.00 ft	Bottom Area	3.97 sf		
MH/CB Type Node					

Record Id: CB108

Descrip:		Increment	0.10 ft		
Start El.	126.58 ft	Max El.	130.08 ft		
Void Ratio	100.00				
Condition	Proposed	Structure Type	CB-TYPE 1		
		Channelization	No Special Shape		
Catch	0.00 ft	Bottom Area	3.97 sf		
MH/CB Type Node					

Descrip:		Increment	0.10 ft
Start El.	135.06 ft	Max El.	138.56 ft
Void Ratio	100.00		
Condition	Proposed	Structure Type	CB-TYPE 1
		Channelization	No Special Shape
Catch	0.00 ft	Bottom Area	3.97 sf
MH/CB Type Node			

Record Id: CB110

Descrip:		Increment	0.10 ft
Start El.	144.22 ft	Max El.	147.71 ft
Void Ratio	100.00		
Condition	Proposed	Structure Type	CB-TYPE 1
		Channelization	No Special Shape
Catch	0.00 ft	Bottom Area	3.97 sf
MH/CB Type Node			

Record Id: CB111

Descrip:		Increment	0.10 ft
Start El.	151.73 ft	Max El.	155.24 ft
Void Ratio	100.00		
Condition	Proposed	Structure Type	CB-TYPE 1
		Channelization	No Special Shape
Catch	0.00 ft	Bottom Area	3.97 sf
MH/CB Type Node			

Descrip: Increment 0.10 ft	
----------------------------	--

Start El.	158.87 ft	Max El.	162.37 ft
Void Ratio	100.00		
Condition	Proposed	Structure Type	CB-TYPE 1
		Channelization	No Special Shape
Catch	0.00 ft	Bottom Area	3.97 sf
MH/CB Type Node			

Record Id: CB113

Descrip:		Increment	0.10 ft
Start El.	163.87 ft	Max El.	167.37 ft
Void Ratio	100.00		
Condition	Proposed	Structure Type	CB-TYPE 1
		Channelization	No Special Shape
Catch	0.00 ft	Bottom Area	3.97 sf
MH/CB Type Node			

Descrip:		Increment	0.10 ft
Start El.	169.16 ft	Max El.	172.56 ft
Void Ratio	100.00		
Condition	Proposed	Structure Type	CB-TYPE 1
		Channelization	No Special Shape
Catch	0.00 ft	Bottom Area	3.97 sf
MH/CB Type Node			

Contributing Drainage Areas

B104 Rational [Directly Connected TC			
Basin Id:	B104	-	New	
IDF Eqn/Family	Seattle		Time Series	
Design Method:	Rational 👻	Storm Dur:	24 ÷ hrs	
Hyd Interval (min):	10	Unit Hyd:	Delmarva Hyd	Ŧ
Peak Factor.	484.00	Loss Method:	Green-Ampt	Ψ.
	Summary Data			
	Imperv TC: 6.30 min.			
	Total Area: 0.156 ac			
Event Frequency	v Flow Ra [.]	te (CFS)*		
2-Year	0.137			
5-Year	0.294			
25-Year	0.360			
100-Year	0.424			
*Flow rate input f	or fixed flow rate.			
Dias la				
BI05 Rational [Directly Connected TC			
Basin Id:	B105	-	New	
IDF Eqn/Family	Seattle			
Design Method:	Rational 👻	Storm Dur:	24 ÷ hrs	
Hyd Interval (min):	10	Unit Hyd:	SCS Unit Hyd	*
Peak Factor:	484.00	Loss Method:	SCS Curve Number	v
	Summary Data			
	12 C			
	Imperv TC: 6.30 min.			
	Total Area: 0.163 ac			
Event Frequency	y Flow_Ra	te (CFS)*		
2-Year	0.143			
5-Year	0.308			
25-Year	0.376			
100-Year	0 443			

B106 Rational	Directly Connected TC			
Basin Id:	B106	•	New	
IDF Egn/Family	Seattle		Time Series	
Design Method:	Rational 👻	Storm Dur:	24 + hrs	
Hyd Interval (min)	10	Unit Hyd:	SCS Unit Hyd	+
Peak Factor:	484.00	Loss Method:	SCS Curve Number	+
	Summary Data			
	Imperv TC: 6.30 min.			
	Total Area: 0.125 ac			
Event Frequenc	v Flow Rat	e (CFS)*		
2-Year	0.110			
5-Year	0.236			
25-Year	0.288			
100-Year	0.339			
*Flow rate input	for fixed flow rate.			
B107 Dational	Directly Connected TC			
	Directly connected 10			
Basin Id:	B107	•	New	
IDF Eqn/Family	Seattle	•	☐ Time Series	
Design Method:	Rational	Storm Dur	24 ÷ hrs	
Hyd Interval (min)	: 10	Unit Hyd:	SCS Unit Hyd	Ŧ
Peak Factor:	484.00	Loss Method:	SCS Curve Number	Ŧ
	Summon Data			
	Summary Data			
	L			
	Imperv TC: 6.30 min.			
	Total Area: 0.172 ac			
Event Frequenc	y Flow Rat	e (CFS)*		
2-Year	0.151			
5-Year	0.325			
25-Year	0.397			
100-Year	0.467			

B108 Rational	Directly Connected TC	
Basin Id:	B108	▼ New
IDF Eon/Family	Seattle	Time Series
Design Method:	Rational 🔹	Storm Dur: 24 + hrs
Hyd Interval (min):	10	Unit Hyd: SCS Unit Hyd
Peak Factor.	484.00	Loss Method: SCS Curve Number -
	Summary Data	
	Import TC: 6 20 min	
	Total Area: 0 186 ac	
	Total Area. U. 100 aC	
Event Frequency	/ Flow Rat	e (CFS)*
2-Year	0.164	
5-Year	0.351	
25-Year	0.430	
100-Year	0.506	
B109 Rational D Basin Id: IDF Eqn/Family Design Method: Hyd Interval (min): Peak Factor:	Directly Connected TC B109 Snoqualmie Pass Rational 10 484.00 Summary Data Imperv TC: 6.30 min. Total Area: 0.128 ac	
Б Б	Els Det	
2-Year		
5-Year	∩ 241	
25-Year	0.241 0.241	
100-Year	0.230	
	0.047	

Rational L			
Basin Id-	B110	Vew	
IDE Equ/Esmily	Seattle		
Design Method:	Bational 👻	Storm Dur 24 - hrs	
Hvd Interval (min):		Unit Hyd: SCS Unit Hyd	*
Peak Factor	484.00	Loss Method: SCS Curve Number	
		lease of the second	_
	Summary Data		
	Imperv TC: 6.30 min.		
	Total Area: 0.129 ac		
Event Frequency	y Flow Rat	te (CFS)*	
2-Year	0.113		
5-Year	0.243		
25-Year	0.298		
100-Year	0.350		
*Flow rate input t	or fixed flow rate.		
B111 Rational [Directly Connected TC		
Basin Id:	BIII		
IDF Eqn/Family	Seattle	Time Series	
Design Method:	Rational	Storm Dur: 24 🕂 nrs	
Hyd Interval (min):	100		
	10	Unit Hyd: SCS Unit Hyd	Y
Peak Factor.	10 484.00	Unit Hyd: SCS Unit Hyd Loss Method: SCS Curve Number	*
Peak Factor.	10 484.00 Summary Data	Unit Hyd: SCS Unit Hyd Loss Method: SCS Curve Number	*
Peak Factor.	484.00 Summary Data	Unit Hyd: SCS Unit Hyd Loss Method: SCS Curve Number	*
Peak Factor.	Summary Data	Unit Hyd: SCS Unit Hyd Loss Method: SCS Curve Number	*
Peak Factor.	Summary Data	Unit Hyd: SCS Unit Hyd Loss Method: SCS Curve Number	*
Peak Factor.	10 484.00 Summary Data Imperv TC: 6.30 min. Total Area: 0.135 ac	Unit Hyd: SCS Unit Hyd Loss Method: SCS Curve Number	*
Peak Factor.	10 484.00 Summary Data Imperv TC: 6.30 min. Total Area: 0.135 ac / Flow Rat	Unit Hyd: SCS Unit Hyd Loss Method: SCS Curve Number	*
Peak Factor. Event Frequency 2-Year	10 484.00 Summary Data Imperv TC: 6.30 min. Total Area: 0.135 ac / Flow Rate 0.119	Unit Hyd: SCS Unit Hyd Loss Method: SCS Curve Number	* *
Peak Factor. Event Frequency 2-Year 5-Year	10 484.00 Summary Data Imperv TC: 6.30 min. Total Area: 0.135 ac Flow Rat 0.119 0.255	Unit Hyd: SCS Unit Hyd Loss Method: SCS Curve Number te (CFS)*	*
Peak Factor. Event Frequency 2-Year 5-Year 25-Year	10 484.00 Summary Data Imperv TC: 6.30 min. Total Area: 0.135 ac V Flow Rat 0.119 0.255 0.311	Unit Hyd: SCS Unit Hyd Loss Method: SCS Curve Number	*
Peak Factor. Event Frequency 2-Year 5-Year 25-Year 100-Year	10 484.00 Summary Data Imperv TC: 6.30 min. Total Area: 0.135 ac Flow Rat 0.119 0.255 0.311 0.367	Unit Hyd: SCS Unit Hyd Loss Method: SCS Curve Number te (CFS)*	*

B112 Rational	Directly Connected TC			
Basin Id:	B112	•	New	
IDF Eqn/Family	Seattle		Time Series	
Design Method:	Rational 🔹	Storm Dur:	24 ÷ hrs	
Hyd Interval (min):	10	Unit Hyd:	SCS Unit Hyd	Ŧ
Peak Factor:	484.00	Loss Method:	SCS Curve Number	+
	Summary Data			
	Imperv TC: 6.30 min.			
	Total Area: 0.084 ac			
Event Frequence	v Flow Rat	e (CES)*		
2-Year	0.074			
5-Year	0.157			
25-Year	0.193			
100-Year	0.228			
*Flow rate input f	for fixed flow rate.			
B113 Detional	Directly Connected TC			
	Directly connected i c			
Basin Id:	B113		New	
IDF Eqn/Family	Seattle	•	☐ Time Series	
Design Method:	Rational	Storm Dur:	24 ÷ hrs	
Hyd Interval (min)	10	Unit Hyd:	SCS Unit Hyd	*
Peak Factor:	484.00	Loss Method:	SCS Curve Number	*
	Summan: Data			
	Summary Data			
	Imperv TC: 6.30 min.			
	Total Area: 0.092 ac			
Event Frequence	y Flow Rat	e (CFS)*		
2-Year	0.081			
5-Year	0.173			
25-Year	0.212			
100-Year	0.249			

CONVEYANCE CALCULATIONS - SUMMARY

801 2nd Avenue, Suite 302 Seattle, WA 98104 | P 206-436-0515

B114 Rational [Directly Connected TC			
Basin Id:	B114	•	New	
IDF Eqn/Family	Seattle	•	Time Series	
Design Method:	Rational 🔹	Storm Dur:	24 ÷ hrs	
Hyd Interval (min):	10	Unit Hyd:	SCS Unit Hyd	Ŧ
Peak Factor.	484.00	Loss Method:	SCS Curve Number	+
	Imperv TC: 6.30 min. Total Area: 0.615 ac			
Event Frequenc	y Flow Ra	te (CFS)*		
2-Year	0.541			
5-Year	1.162			
25-Year	1.421			
100-Year	1.673			

Basin Id:	NO RUNOFF COLLECT	ED 🔹	New	
IDF Eqn/Family	Seattle	-	🗖 Time Series	
Design Method:	Rational 🔹	Storm Dur:	24 ÷ hrs	
Hyd Interval (min):	10	Unit Hyd:	SCS Unit Hyd	Ŧ
Peak Factor:	484.00	Loss Method:	SCS Curve Number	Ŧ
	Summary Data Imperv TC: 6.30 min Total Area: 0.00 ac			

CALCULATION REPORT

Calculated By: Nathan Hahne, EIT Date: 8/21/2024

Checked By: Thomas Cheong, PE Date: 8/21/2024

Conveyance Calculations: NE 85th Street (Downstream Conveyance from Detention Vault)

Objective:

To analyze the hydraulic grade line and check conveyance capacity in the 25-year storm event of the proposed system.

Key Design Factors and Assumptions:

- Stormshed 3G model is used for analyzing the system.
- Minimum Time of Concentration (TC) is set to 6.30 minutes.
- Smooth wall pipe with manning's coefficients of 0.012 is used for this analysis.
- "Max El" corresponds to rim elevation at the structure or pipe crown.
- "Start El" corresponds to the lowest pipe invert in a particular structure or outfall elevation.
- StormShed3G is used to analyzed for a 25-year storm event using a fixed flow rate. 25-year storm event developed from MGSFlood (continuous method) directed into the Detention Vault.

*********** Link: Vault Link ******** Flood Frequency Data(cfs) (Recurrence Interval Computed Using Gringorten Plotting Position) Tr (yrs) Flood Peak (cfs)

2-Year	0.472
5-Year	0.632
10-Year	0.797
25-Year	1.018
50-Year	1.127
100-Year	1.501
200-Year	1.687
500-Year	1.928

- Runoff from the detention vault discharges to a closed conveyance system with solid covered catch basins connecting to the existing conveyance system downstream.
- Tailwater is set to the crown of the 54" outfall pipe to existing structure CB #7905.

Summary of Results:

Hydrologic Flow Rates

Event Frequency	Flow Rate (CFS)
2-Year	0.47
5-Year	0.63
10-Year	0.80
25-Year	1.02
100-Year	1.50

Nodes and Flow Rates

ROUTEHYD [] THRU [Flow Splitter to Vault] USING [25 year] AND [] NOTZERO RELATIVE Fixed Flow

Gravity Analysis using fixed flowrates

Reach ID	Flow (cfs)	Full Q (cfs)	Full ratio	nDepth (ft)	Size	nVel (ft/s)	fVel (ft/s)	CFlow
P-103	1.018	27.9934	0.0364	0.1302	12 in Diam	16.9303	35.6423	1.018
P101	1.018	5.851	0.174	0.2818	12 in Diam	5.6046	7.4497	0.00
Vault_Outlet	1.018	3.8701	0.263	0.35	12 in Diam	4.1559	4.9276	0.00
P100	1.018	3.6523	0.2787	0.3611	12 in Diam	3.9833	4.6502	0.00

HGL Analysis

From Node	To Node	HG El (ft)	App (ft)	Bend (ft)	Junct Loss (ft)	Adjusted HG El (ft)	Max El (ft)		
							70.424		
CB100	CB EX7905	71.1628		0.1830		71.3458	82.9100		
Vault	CB100	71.6517	na	na	na	1.1000	1.0000		
No approach losses	No approach losses at node CB103-TO-VAULT because inverts and/or crowns are offset.								
CB101	Vault	76.5058		0.2080		76.7138	83.4200		
CB103-TO- VAULT	CB101	93.1156				93.1156	97.7800		

Conduit Notes

Reach	HW Depth (ft)	HW/D ratio	Q (cfs)	TW Depth (ft)	Dc (ft)	Dn (ft)	Comment
P100	0.5928	0.5928	1.02	0.4240	0.4240	0.3611	SuperCrit flow, Inlet end controls
Vault_Outlet	0.8917	0.8917	1.02	0.7758	0.4240	0.3500	Outlet Control M1 Backwater
P101	0.5858	0.5858	1.02	0.4240	0.4240	0.2818	SuperCrit flow, Inlet end controls
P-103	0.3356	0.3356	1.02	0.4240	0.4240	0.1302	SuperCrit flow, Inlet end controls

Reach Records

Record Id: P100

Section Shape:		Circular				
Uniform Flow Method:		Manning's	Coefficient:		0.012	
Routing Method:		Travel Time Shift	Contributing Hyd			
DnNode		CB EX7905	UpNode		CB100	
Material		unspecified	Size		12 in Diam	
Ent Losses		Groove End w/Headwall				
Length		64.00 ft	Slope	Slope		
Up Invert		70.47 ft	Dn Invert		70.00 ft	
		Conduit Constrai	nts			
Min Vel	Max Vel	Min Slope	Max Slope	N	1in Cover	
2.00 ft/s	15.00 ft/s	0.50%	2.00% 3.00 ft		3.00 ft	
Drop across MH		0.00 ft	Ex/Infil Rate		0.00 in/hr	

Record Id: P101

Section Shape:		Circular				
Uniform Flow Meth	od:	Manning's	Coefficient:		0.012	
Routing Method:		Travel Time Shift	Contributing Hyd			
DnNode		Vault	UpNode		CB101	
Material		unspecified	Size 12 in Diar			
Ent Losses		Groove End w/Headwall				
Length		7.00 ft	Slope		2.29%	
Up Invert		75.92 ft	Dn Invert		75.76 ft	
		Conduit Constra	ints			
Min Vel	Max Vel	Min Slope	Max Slope	١	Min Cover	
2.00 ft/s	15.00 ft/s	0.50%	2.00%		3.00 ft	
Drop across MH		0.00 ft	Ex/Infil Rate		0.00 in/hr	

Section Shape:		Circular					
Uniform Flow Method:		١	Manning's Coeff		Coefficient:		0.024
Routing Method:		Tra	vel Time Shift	Contributing Hyd			
DnNode			CB101	UpNode		CB103-TO-VAULT	
Material		u	inspecified	Size		12 in Diam	
Ent Losses		Groove End w/Headwall					
Length			25.00 ft	Slope			52.32%
Up Invert			92.78 ft	Dn Invert			79.70 ft
			Conduit Co	nstrai	nts		
Min Vel	Max Ve	el Min Slope			Max Slope		Min Cover
2.00 ft/s	15.00 ft.	t/s 0.50%		2.00%			3.00 ft
Drop across MH			0.00 ft	Ex/Infil Rate			0.00 in/hr

Record Id: Vault_Outlet

Section Shape:		Circular				
Uniform Flow Meth	od:	Manning's	Coefficient:		0.012	
Routing Method:		Travel Time Shift	Contributing Hyd			
DnNode		CB100	UpNode		Vault	
Material		unspecified	Size		12 in Diam	
Ent Losses		Groove End w/Headwall				
Length		19.00 ft	Slope		1.00%	
Up Invert		70.76 ft	Dn Invert		70.57 ft	
		Conduit Constrai	nts			
Min Vel	Max Vel	Min Slope	Max Slope	N	/lin Cover	
2.00 ft/s	15.00 ft/s	0.50%	2.00%		3.00 ft	
Drop across MH		0.00 ft	Ex/Infil Rate		0.00 in/hr	

Node Records

Record Id: CB EX7905

Descrip:		Increment	0.10 ft
Start El.	70.00 ft	Max El.	83.14 ft
Void Ratio	100.00		
Condition	Existing	Structure Type	CB-TYPE 2-96
		Channelization	No Special Shape
Catch	0.00 ft	Bottom Area	50.265 sf
MH/CB Ty	pe Node		

Record Id: CB100

Descrip:		Increment	0.10 ft
Start El.	70.57 ft	Max El.	82.91 ft
Void Ratio	100.00		
Condition	Proposed	Structure Type	CB-TYPE 2-48
		Channelization	No Special Shape
Catch	0.00 ft	Bottom Area	12.5664 sf
MH/CB Type Node			

Record Id: CB101

Descrip:		Increment	0.10 ft
Start El.	75.92 ft	Max El.	83.42 ft
Void Ratio	100.00		
Condition	Proposed	Structure Type	CB-TYPE 2-54
		Channelization	No Special Shape
Catch	0.00 ft	Bottom Area	15.904 sf
MH/CB Type Node			

Record Id: CB103-TO-VAULT

Descrip:		Increment	0.00 ft
Start El.	92.78 ft	Max El.	97.78 ft
Void Ratio	0.00		
Condition	Proposed	Structure Type	CB-TYPE 272
		Channelization	No Special Shape
Catch	0.00 ft	Bottom Area	28.274 sf
MH/CB Type Node			

Record Id: Vault

Descrip:		Increment	0.10 ft	
Start El.	70.76 ft	Max El.	77.26 ft	
Void Ratio	100.00			
Length	84.00 ft	Width	12.00 ft	
Vault Type Node				

Contributing Drainage Areas

Flow rates were generated by MGSFlood to determine the fixed flow rate from the detention vault. No contributing areas have been developed with the conveyance modeling downstream from the detention vault.

CALCULATION REPORT

Calculated By: Nathan Hahne, EIT Date: 8/21/2024

Checked By: Thomas Cheong, PE Date: 8/21/2024

Conveyance Calculations: NE 85th Street (Downstream Conveyance from Flow Splitter following Gutterline)

Objective:

To analyze the hydraulic grade line and check conveyance capacity in the 25-year storm event of the proposed system tributary to the flow splitter.

Key Design Factors and Assumptions:

- Stormshed 3G model is used for analyzing the system.
- Minimum Time of Concentration (TC) is set to 6.30 minutes as required by King County.
- Smooth wall pipe with manning's coefficients of 0.012 is used for this analysis.
- "Max El" corresponds to rim elevation at the structure or pipe crown.
- "Start El" corresponds to the lowest pipe invert in a particular structure or outfall elevation.
- StormShed3G is used to analyzed for a 25-year storm event using a fixed flow rate. 25-year storm event developed from MGSFlood (continuous method) directed into the existing conveyance system.

Flood Frequency Data(cfs) (Recurrence Interval Computed Using Gringorten Plotting Position) Tr (yrs) Flood Peak (cfs) 2-Year 0.418 5-Year 0.560 10-Year 0.706 25-Year 0.902 50-Year 0.999 100-Year 1.330 200-Year 1.495 1.709 500-Year

- Runoff from flow splitter discharges to an open conveyance system with grated lid catch basins connecting to the existing conveyance system downstream along the gutterline of NE 85th Street.
- Runoff collected from catch basins downstream from the flow splitter was determined through the
 rational method and flow rate values has been inputted to the fixed flow rate tables for each catch basin.
 25-year storm event developed from calculations from the Rational Method equations as found in the
 2021 King County Surface Water Design Manual. See fixed flow rate tables in the section for
 "Contributing Drainage Areas".

• Tailwater is set to the crown of the 12" outfall pipe to the existing conveyance system along the gutterline of NE 85th Street.

Summary of Results:

Hydrologic Flow Rates

Event Frequency	Flow Rate (CFS)
2-Year	0.49
10-Year	0.82
25-Year	1.04
100-Year	1.50

Layout Report: CB103 to Existing

Nodes and Flow Rates

ROUTEHYD [] THRU [CB103 to Existing] USING [25 year] AND [] NOTZERO RELATIVE Fixed Flow

Gravity Analysis using fixed flowrates

Reach ID	Flow (cfs)	Full Q (cfs)	Full ratio	nDepth (ft)	Size	nVel (ft/s)	fVel (ft/s)	CFlow
P-103-85th	0.902	5.8948	0.153	0.2639	12 in Diam	5.4433	7.5054	0.902
P-102	1.038	9.7983	0.1059	0.2191	12 in Diam	8.1484	12.4756	0.136

HGL Analysis

From Node	To Node	HG EI (ft) App (ft		p (ft) Bend (ft) Junct Loss (ft)		Adjusted HG EI (ft)	Max El (ft)
							87.65
CB102	CB EX 1	92.6720		0.0124		92.6844	95.7000
CB103	CB102	93.3255				93.3255	97.7800

Conduit Notes

Reach	HW Depth (ft)	HW/D ratio	$Q\left(cfs ight)$	TW Depth (ft)	Dc (ft)	Dn (ft)	Comment
P-102	0.5720	0.5720	1.04	1.0000	0.4282	0.2191	SuperCrit flow, Inlet end controls
P-103-85th	0.5455	0.5455	0.90	0.4844	0.3982	0.2639	SuperCrit flow, Inlet end controls

Reach Records

Record Id: P-102

Section Shape:		Circu	ular			
Uniform Flow Method:			ning's	Coefficient:	0.012	
Routing Method:		Travel Time Shift		Contributing Hyd		
DnNode		CBE	X 1	UpNode		CB102
Material			ecified	Size		12 in Diam
Ent Losses			ove End w/Headwall			
Length		85.00 ft		Slope		6.41%
Up Invert		92.10 ft Dn Invert			86.65 ft	
Conduit Constraint	S					
Min Vel Max Vel			Min Slope	Max Slope	Min C	Cover
2.00 ft/s 15.00 ft/s			0.50%	2.00%	3.00	ft
Drop across MH) ft	Ex/Infil Rate		0.00 in/hr

Record Id: P-103-85th

Section Shape:		Circu	ular			
Uniform Flow Method:			ning's	Coefficient:		0.012
Routing Method:			el Time Shift	Contributing Hyd		
DnNode		CB10)2	UpNode		CB103
Material			pecified	Size		12 in Diam
Ent Losses			Groove End w/Headwall			
Length		25.00 ft		Slope		2.32%
Up Invert		92.7	8 ft	Dn Invert		92.20 ft
Conduit Constraint	S					
Min Vel Max Vel			Min Slope	Max Slope	Min (Cover
2.00 ft/s 15.00 ft/s			0.50%	2.00%	3.00	ft
Drop across MH) ft	Ex/Infil Rate		0.00 in/hr

Node Records

Record Id: CB EX 1

Descrip:		Increment	0.10 ft					
Start El.	86.65 ft	Max El.	89.56 ft					
Void Ratio	100.00							
Condition	Proposed	Structure Type	CB-TYPE 1					
		Channelization	No Special Shape					
Catch	0.00 ft	Bottom Area	3.97 sf					
MH/CB Type Node								

Record Id: CB102

Descrip:		Increment	0.10 ft					
Start El.	92.10 ft	Max El.	95.70 ft					
Void Ratio	100.00							
Condition	Proposed	Structure Type	CB-TYPE 1					
		Channelization	No Special Shape					
Catch	0.00 ft	Bottom Area	3.97 sf					
MH/CB Type Node								

Record Id: CB103

Descrip:		Increment	0.10 ft						
Start El.	92.78 ft	Max El.	97.78 ft						
Void Ratio	100.00								
Condition	Proposed	Structure Type	CB-TYPE 272						
		Channelization	No Special Shape						
Catch	0.00 ft	Bottom Area	28.274 sf						
MH/CB Type Node									

Contributing Drainage Areas

B_CB EX1 Ration	al Directly Conr	nected TC			
Basin Id:	B_CB EX1		-	New	
IDF Eqn/Family	Seattle		•	☐ Time Series	
Design Method:	Rational	-	Storm Dur:	24 ÷ hrs	
Hyd Interval (min):	10		Unit Hyd:	SCS Unit Hyd	Ŧ
Peak Factor:	484.00		Loss Method:	SCS Curve Number	Ŧ
	Summary Data Imperv TC: (Total Area: (6.30 min. 0.095 ac			
Event Frequency	/	Flow Rate	e (CFS)*		
2-Year		0.133			
10-Year		0.205			

0.248

0.328

*Flow rate input for fixed flow modeling

25-Year

100-Year

B102 Rational [Directly Connected TC		
Basin Id:	B102	-	New
IDF Eqn/Family	Seattle	•	Time Series
Design Method:	Rational 👻	Storm Dur:	24 ÷ hrs
Hyd Interval (min):	10	Unit Hyd:	SCS Unit Hyd 👻
Peak Factor:	484.00	Loss Method:	SCS Curve Number 👻
	Imperv TC: 6.30 min. Total Area: 0.052 ac		
Event Frequency	/ Flow Rat	te (CFS)*	
2-Year	0.073		
10-Year	0.113		
25-Year	0.136		_
100-Year	0.171		<u>_</u> _

*Flow rate input for fixed flow modeling

CALCULATION REPORT

Calculated By: Nathan Hahne, EIT Date:12/04/2024

Checked By: Thomas Cheong, PE Date: 12/04/2024

Conveyance Calculations: NE 85th Street (Upstream Ped Bridge)

Objective:

To analyze the hydraulic grade line and check conveyance capacity in the 25-year storm event of the proposed system.

Key Design Factors and Assumptions:

- Minimum Time of Concentration (TC) is set to 6.30 minutes at the upstream end.
- Smooth wall pipe with manning's coefficients of 0.012 is used for this analysis.
- "Max El" corresponds to rim elevation at the structure or pipe crown.
- "Start El" corresponds to the lowest pipe invert in a particular structure or outfall elevation.
- StormShed3G is used to analyze a 25-year storm event using the Rational Method.
- Stormshed 3G model is used for analyzing the system.
- Rainfall IDF Family Seattle is used.
- Tailwater is set to the invert elevation of the 12" outfall pipe (Outfall 44243).

Summary of Results:

Hydrologic Flow Rates

Event Frequency	Flow Rate (CFS)
2-Year	0.53
5-Year	0.70
10-Year	0.81
25-Year	0.98
50-Year	1.11
100-Year	1.23

Contributing Basins and Areas

Nodes and Flow Rates

Appended on: Thursday, December 5, 2024 11:30:07 AM

ROUTEHYD [] THRU [Upstream Ped Bridge] USING [25 yr] AND [Seattle] NOTZERO RELATIVE RATIONAL

Rational Method analysis

Reach ID	Area (ac)	TC (min)	i (in/hr)	Flow (cfs)	Full Q (cfs)	Full ratio	nDepth (ft)	Size	nVel (ft/s)	fVel (ft/s)	CArea
P115	0.451	6.30	2.5549	0.987	20.6048	0.0479	0.1487	12 in Diam	13.528	26.2349	B115
P116	0.451	6.3641	2.541	0.9816	8.098	0.1212	0.2354	12 in Diam	6.9614	10.3107	NO RUNOFF COLLECTED

HGL Analysis

From Node	To Node	HG EI (ft)	App (ft)	Bend (ft)	Junct Loss (ft)	Adjusted HG EI (ft)	Max El (ft)
							174.3194
CB116	Outfall 44243	176.1329		3.2336		179.3665	180.5700
CB115	CB116	190.8549				190.8549	203.9900

Conduit Notes

Reach	HW Depth (ft)	HW/D ratio	Q (cfs)	TW Depth (ft)	Dc (ft)	Dn (ft)	Comment
P116	0.5629	0.5629	0.98	0.4161	0.4161	0.2354	SuperCrit flow, Inlet end controls
P115	0.4449	0.4449	0.99	3.6965	0.4173	0.1487	SuperCrit flow, Inlet end controls

Reach Records

Record Id: P115

Section Shape:		Circu	ular			
Uniform Flow Method:		Man	ning's	Coefficient:		0.012
Routing Method:		Travel Time Shift		Contributing Hyd		
DnNode C		CB116		UpNode		CB115
Material L		unspecified		Size		12 in Diam
Ent Losses		Groo	ove End w/Headwall	1		1
Length		52.00 ft		Slope		27.60%
Up Invert		190.41 ft		Dn Invert		175.57 ft
Conduit Constraint	S					
Min Vel Max Vel		Min Slope	Max Slope	Min C	Cover	
2.00 ft/s 15.00 ft/s		0.50%	2.00%	3.00	ft	
Drop across MH		0.00) ft	Ex/Infil Rate		0.00 in/hr

Record Id: P116

Section Shape:	Circular		
Uniform Flow Method:	Manning's	Coefficient:	0.012
Routing Method:	Travel Time Shift	Contributing Hyd	
DnNode	Outfall 44243	UpNode	CB116
Material	unspecified	Size	18 in Diam
Ent Losses	Groove End w/Headwall		

Length		37.00 ft	Slope	7.08%
Up Invert		175.57 ft	7 ft Dn Invert	
Conduit Cons	traints			
Min Vel	Max Vel	Min Slope	Max Slope	Min Cover
2.00 ft/s 15.00 ft/s		0.50%	2.00%	3.00 ft
Drop across M	Η	0.00 ft	Ex/Infil Rate	0.00 in/hr

Node Records

Record Id: CB115

Descrip:		Increment	0.10 ft
Start El.	190.41 ft	Max El.	203.99 ft
Void Ratio	100.00		
Condition	Proposed	Structure Type	CB-TYPE 1
		Channelization	No Special Shape
Catch	0.00 ft	Bottom Area	3.97 sf
МН/СВ Ту	pe Node		

Record Id: CB116

Descrip:		Increment	0.10 ft
Start El.	175.57 ft	Max El.	180.57 ft
Void Ratio	100.00		
Condition	Proposed	Structure Type	CB-TYPE 1
		Channelization	No Special Shape
Catch	0.00 ft	Bottom Area	3.97 sf
МН/СВ Ту	pe Node	•	•

Record Id: Outfall 44243

Descrip:		Increment	0.10 ft
Start El.	173.95 ft	Max El.	174.95 ft
Void Ratio	100.00		

CONVEYANCE CALCULATIONS - SUMMARY

801 2nd Avenue, Suite 302 Seattle, WA 98104 | P 206-436-0515

Dummy Type Node

Contributing Drainage Areas

Basin Id:	B115	-	New	
IDF Eqn/Family	Seattle	•	☐ Time Series	
Design Method:	Rational 👻	Storm Dur:	24 ÷ hrs	
Hyd Interval (min):	10	Unit Hyd:	SCS Unit Hyd	¥
Peak Factor:	484.00	Loss Method:	SCS Curve Number	Y
	Summary Data			
	Imperv TC: 6.30 min.			
	Total Area: 0.451 ac			
NO RUNOFF COLL	ECTED Rational Direc	tly Connected T	c	
NO RUNOFF COLLI Basin Id:	ECTED Rational Direc	tly Connected T	C New	
NO RUNOFF COLLI Basin Id: IDF Eqn/Family	ECTED Rational Direc NO RUNOFF COLLECTE Seattle	tly Connected T	C New □ Time Series	
NO RUNOFF COLLI Basin Id: IDF Eqn/Family Design Method:	ECTED Rational Direc NO RUNOFF COLLECTE Seattle Rational 🔹	tly Connected T D D Storm Dur.	New Time Series	
NO RUNOFF COLLI Basin Id: IDF Eqn/Family Design Method: Hyd Interval (min):	ECTED Rational Direc NO RUNOFF COLLECTE Seattle Rational – 10	tly Connected T D J Storm Dur: Unit Hyd:	C New □ Time Series □ 24 hrs □ SCS Unit Hyd	*
NO RUNOFF COLLI Basin Id: IDF Eqn/Family Design Method: Hyd Interval (min): Peak Factor:	ECTED Rational Direc NO RUNOFF COLLECTE Seattle Rational • 10 484.00	tly Connected T D Storm Dur: Unit Hyd: Loss Method:	New Time Series 24 - hrs SCS Unit Hyd SCS Curve Number	+ +
NO RUNOFF COLLI Basin Id: IDF Eqn/Family Design Method: Hyd Interval (min): Peak Factor:	ECTED Rational Direc NO RUNOFF COLLECTE Seattle Rational • 10 484.00 Summary Data	tly Connected T	C New ☐ Time Series 24	+
NO RUNOFF COLLI Basin Id: IDF Eqn/Family Design Method: Hyd Interval (min): Peak Factor:	ECTED Rational Direc NO RUNOFF COLLECTE Seattle Rational • 10 484.00 Summary Data Imperv TC: 6.30 min.	tly Connected T D Storm Dur: Unit Hyd: Loss Method:	C New ☐ Time Series 24	

CB/Pipe #	IMPERVIOUS (AC)	PERVIOUS (AC)
100	0.000	0.000
101	0.000	0.000
102	0.051	0.001
103	0.000	0.000
104	0.155	0.001
105	0.162	0.001
106	0.124	0.001
107	0.171	0.001
108	0.185	0.001
109	0.127	0.001
110	0.128	0.001
111	0.134	0.001
112	0.083	0.001
113	0.091	0.001
114	0.613	0.002
115	0.423	0.028
116	0.000	0.000
CB EX 1	0.094	0.001
CB EX 7905	0.000	0.000

CB/Pipe #	IMPERVIOUS (AC)	PERVIOUS (AC)
100	0.000	0.000
101	0.000	0.000
102	0.051	0.001
103	0.000	0.000
104	0.155	0.001
105	0.162	0.001
106	0.124	0.001
107	0.171	0.001
108	0.185	0.001
109	0.127	0.001
110	0.128	0.001
111	0.134	0.001
112	0.083	0.001
113	0.091	0.001
114	0.613	0.002
115	0.423	0.028
116	0.000	0.000
CB EX 1	0.094	0.001
CB EX 7905	0.000	0.000

APPENDIX E Drainage Plans

CONSTRUCTION NOTES:

 $\langle 1 \rangle$ REMOVE EXISTING CATCH BASIN.

FOR CORRUGATED METAL PIPE (CMP) - CONTRACTOR SHALL INSPECT AND CCTV EXISTING PIPE TO DETERMINE PIPE CONDITION. FOR CMP IN GOOD CONDITION, PIPE SHALL BE FILLED WITH COF AND PIPE ENDS SHALL BE PLUGGED WITH COMMERCIAL CEMENT CONCRETE. FOR ALL EXISTING PIPE IN BAD CONDITION, DISCUSS WITH THE CITY STORMWATER DIVISION FOR FURTHER ACTION. FOR CONCRETE PIPE AND DUCTILE IRON PIPE - CONTRACTOR SHALL FILL PIPE WITH CDF AND BRICK, AND PIPE ENDS SHALL BE PLUGGED WITH CEMENT-BASE GROUT.

- $\langle 3 \rangle$ CONNECT NEW PIPE TO EXISTING CATCH BASIN.
- $\langle 4 \rangle$ INSTALL 6" CLEANOUT PER DETAIL ON DWG. NO. DD1.
- $\left<5\right>$ INSTALL CATCH BASIN TYPE 1 PER COK STD PLAN CK-D.07.
- $\overline{(6)}$ INSTALL CATCH BASIN TYPE 2-48" PER COK STD PLAN CK-D.09.
- $\langle 7 \rangle$ install solid locking Lid with Cok storm drain logo per Cok std plan CK-D.18.
- $\langle 8 \rangle$ INSTALL DETENTION VAULT FACILITY PER DETAIL ON DWG. NO. DD1.
- $\left<9\right>$ INSTALL FLOW SPLITTER PER DETAIL ON DWG. NO. DD2.
- (10) INSTALL SOLID LOCKING LID WITH ANTI-SLIP COATING AND COK STORM DRAIN LOGO PER COK STD PLAN CK-D.18A, SUPPLIED BY EJ GROUP INC, OR APPROVED EQUAL.
- (11) REMOVE EXISTING PIPE.
- 12 INSTALL CL. 50 DUCTILE IRON STORM SEWER PIPE 12 IN. DIAM. WITH
- $\langle 13 \rangle$ INSIDE OF CATCH BASIN TO BE EPOXY COATED FOR SCOUR PROTECTION.
- $\langle 14 \rangle$ INSTALL PIPE THROUGH WALL PER DETAIL ON DWG. NO. WD1.
- (15) INSTALL PIPE ANCHOR AT EVERY PIPE JOINT PER DETAIL ON DWG. NO. DD1.
- (16) INSTALL MANHOLE TYPE 3-48" PER WSDOT STD PLAN B-15.60.
- $$\langle \overline{17}\rangle$$ INSTALL SOLID LOCKING LID WITH COK STORM DRAIN LOGO PER COK STD PLAN CK-D.18A.

GENERAL NOTES:

- 1. THE OFFSETS OF ALL CATCH BASINS ARE MEASURED TO THE CENTER OF STRUCTURE, UNLESS OTHERWISE NOTED.
- ALL EXISTING STORM DRAIN PIPE, EXISTING CATCH BASINS AND STORM MANHOLES SHOWN IN THESE PLANS ARE TO BE PROTECTED, UNLESS OTHERWISE NOTED.
- 3. ALL DRAINAGE STRUCTURES ARE PER COK STANDARD PLANS UNLESS NOTED OTHERWISE.
- 4. WALL UNDERDRAIN INVERTS AND SLOPES ARE APPROXIMATE AND PROFILES ARE NOT SHOWN ON THE PLANS. CONTRACTOR TO ADJUST WALL UNDERDRAIN SLOPES AND INVERTS AS NECESSARY TO AVOID UTILITY CONFLICTS. MINIMUM THE LENGTH OF THE WALL. CLEANOUTS SHALL BE SPACED EVERY 100 FEET ALONG THE LENGTH OF THE WALL. CLEANOUTS SHALL BE INSTALLED PER COK STD PLAN CK-D.05B.
- 5. ALL PIPE AND APPURTENANCES SHALL BE LAID ON A PROPERLY PREPARED FOUNDATION IN ACCORDANCE WITH WSDOT SPECIFICATIONS. THIS SHALL INCLUDE LEVELING AND COMPACTING THE TRENCH BOTTOM, THE TOP OF THE FOUNDATION MATERIAL, AND ANY REQUIRED PIPE BEDDING, TO A UNIFORM GRADE SO THAT THE ENTIRE PIPE IS SUPPORTED BY A UNIFORMLY DENSE UNYIELDING BASE.
- 6. ALL STORM SEWER PIPE SHALL BE SCHEDULE A SMOOTH INTERIOR WALL HIGH-PERFORMANCE POLYPROPYLENE STORM SEWER PIPE UNLESS OTHERWISE NOTED.
- 7. ALL DRAINAGE STRUCTURES, SUCH AS CATCH BASINS, NOT LOCATED WITHIN A TRAVELED ROADWAY OR SIDEWALK, SHALL HAVE SOLID LOCKING LIDS. ALL DRAINAGE STRUCTURES ASSOCIATED WITH A PERMANENT DETENTION FACILITY SHALL HAVE SOLID LOCKING LIDS.
- ALL PROPOSED CATCH BASINS SHALL HAVE VANED GRATES PER COK STD PLAN CK-D.15 AND CK-D.16 UNLESS NOTED OTHERWISE.

EXISTING STORM DRAIN PIPE

JR2

è

DWG.

STA

MATCHLINE

CATCH BASIN, TYPE 1

CATCH BASIN, TYPE 2

40

D	WG. NO. DR1
CITY OF KIRKLAND PUBLIC WORKS DEPARTMENT 123 FIFTH AVENUE - KIRKLAND, WA 98033-6189 - (425)587-3800	SHEET
E 85TH ST PED-BIKE CONNECTION	21
DRAINAGE PLAN	100

1/6/2

lon 06 2025 4:10pm	noney opton	V:\kirkland	aity of Projects\20210012	no 95th at nod bike\CADD\02	n on choote\20210012 DR dwg	Lowout Nome: DB

I heffere vou dig

BY REVIEW REVISION DATE

CONSTRUCTION NOTES:

 $\langle 1 \rangle$ REMOVE EXISTING CATCH BASIN.

FOR CORRUGATED METAL PIPE (CMP) - CONTRACTOR SHALL INSPECT AND CCTV EXISTING PIPE TO DETERMINE PIPE CONDITION. FOR CMP IN GOOD CONDITION, PIPE SHALL BE FILLED WITH COF AND PIPE ENDS SHALL BE PLUGGED WITH COMMERCIAL CEMENT CONCRETE. FOR ALL EXISTING PIPE IN BAD CONDITION, DISCUSS WITH THE CITY STORMWATER DIVISION FOR FURTHER ACTION. FOR CONCRETE PIPE AND DUCTILE IRON PIPE - CONTRACTOR SHALL FILL PIPE WITH CDF AND BRICK, AND PIPE ENDS SHALL BE PLUGGED WITH CEMENT-BASE GROUT.

- $\langle 3 \rangle$ CONNECT NEW PIPE TO EXISTING CATCH BASIN.
- $\langle 4 \rangle$ INSTALL 6" CLEANOUT PER DETAIL ON DWG. NO. DD1.
- $\left< 5 \right>$ INSTALL CATCH BASIN TYPE 1 PER COK STD PLAN CK-D.07.
- $\overline{(6)}$ INSTALL CATCH BASIN TYPE 2-48" PER COK STD PLAN CK-D.09.
- $\langle 7 \rangle$ INSTALL SOLID LOCKING LID WITH COK STORM DRAIN LOGO PER COK STD PLAN CK-D.18.
- $\langle 8 \rangle$ INSTALL DETENTION VAULT FACILITY PER DETAIL ON DWG. NO. DD1.
- $\left<9\right>$ INSTALL FLOW SPLITTER PER DETAIL ON DWG. NO. DD2.
- INSTALL SOLID LOCKING LID WITH ANTI-SLIP COATING AND COK STORM DRAIN LOGO PER COK STD PLAN CK-D.18A, SUPPLIED BY EJ GROUP INC, OR APPROVED EQUAL. $\langle 10 \rangle$
- (11) REMOVE EXISTING PIPE.

Ş

ß

σ

צו oر ا

MATCH

- 12 INSTALL CL. 50 DUCTILE IRON STORM SEWER PIPE 12 IN. DIAM. WITH
- $\langle 13 \rangle$ INSIDE OF CATCH BASIN TO BE EPOXY COATED FOR SCOUR PROTECTION.
- $\langle \overline{14} \rangle$ INSTALL PIPE THROUGH WALL PER DETAIL ON DWG. NO. WD1.
- (15) INSTALL PIPE ANCHOR AT EVERY PIPE JOINT PER DETAIL ON DWG. NO. DD1.
- $\langle 16 \rangle$ INSTALL MANHOLE TYPE 3-48" PER WSDOT STD PLAN B-15.60.

 $$\langle 17 \rangle$$ INSTALL SOLID LOCKING LID WITH COK STORM DRAIN LOGO PER COK STD PLAN CK-D.18A.

GENERAL NOTES:

- 1. THE OFFSETS OF ALL CATCH BASINS ARE MEASURED TO THE CENTER OF STRUCTURE, UNLESS OTHERWISE NOTED.
- ALL EXISTING STORM DRAIN PIPE, EXISTING CATCH BASINS AND STORM MANHOLES SHOWN IN THESE PLANS ARE TO BE PROTECTED, UNLESS OTHERWISE NOTED.
- 3. ALL DRAINAGE STRUCTURES ARE PER COK STANDARD PLANS UNLESS NOTED OTHERWISE.
- 4. WALL UNDERDRAIN INVERTS AND SLOPES ARE APPROXIMATE AND PROFILES ARE NOT SHOWN ON THE PLANS. CONTRACTOR TO ADJUST WALL UNDERDRAIN SLOPES AND INVERTS AS NECESSARY TO AVOID UTILITY CONFLICTS. MINIMUM THE LENGTH OF THE WALL. CLEANOUTS SHALL BE SPACED EVERY 100 FEET ALONG THE LENGTH OF THE WALL. CLEANOUTS SHALL BE INSTALLED PER COK STD PLAN CK-D.05B.
- 5. ALL PIPE AND APPURTENANCES SHALL BE LAID ON A PROPERLY PREPARED FOUNDATION IN ACCORDANCE WITH WSDOT SPECIFICATIONS. THIS SHALL INCLUDE LEVELING AND COMPACTING THE TRENCH BOTTOM, THE TOP OF THE FOUNDATION MATERIAL, AND ANY REQUIRED PIPE BEDDING, TO A UNIFORM GRADE SO THAT THE ENTIRE PIPE IS SUPPORTED BY A UNIFORMLY DENSE UNYIELDING BASE.
- 6. ALL STORM SEWER PIPE SHALL BE SCHEDULE A SMOOTH INTERIOR WALL HIGH-PERFORMANCE POLYPROPYLENE STORM SEWER PIPE UNLESS OTHERWISE NOTED.
- 7. ALL DRAINAGE STRUCTURES, SUCH AS CATCH BASINS, NOT LOCATED WITHIN A TRAVELED ROADWAY OR SIDEWALK, SHALL HAVE SOLID LOCKING LIDS. ALL DRAINAGE STRUCTURES ASSOCIATED WITH A PERMANENT DETENTION FACILITY SHALL HAVE SOLID LOCKING LIDS.
- ALL PROPOSED CATCH BASINS SHALL HAVE VANED GRATES PER COK STD PLAN CK-D.15 AND CK-D.16 UNLESS NOTED OTHERWISE.

47SHINGTO

HORIZONTAL SCALE:

20

1" = 20' 40

CONSTRUCTION NOTES:

 $\langle 1 \rangle$ REMOVE EXISTING CATCH BASIN.

FOR CORRUGATED METAL PIPE (CMP) - CONTRACTOR SHALL INSPECT AND CCTV EXISTING PIPE TO DETERMINE PIPE CONDITION. FOR CMP IN GOOD CONDITION, PIPE SHALL BE FILLED WITH COF AND PIPE ENDS SHALL BE PLUGGED WITH COMMERCIAL CEMENT CONCRETE. FOR ALL EXISTING PIPE IN BAD CONDITION, DISCUSS WITH THE CITY STORMWATER DIVISION FOR FURTHER ACTION. FOR CONCRETE PIPE AND DUCTILE IRON PIPE - CONTRACTOR SHALL FILL PIPE WITH CDF AND BRICK, AND PIPE ENDS SHALL BE PLUGGED WITH CEMENT-BASE GROUT.

- $\langle 3 \rangle$ CONNECT NEW PIPE TO EXISTING CATCH BASIN.
- 4 INSTALL 6" CLEANOUT PER DETAIL ON DWG. NO. DD1.
- $\left<5\right>$ INSTALL CATCH BASIN TYPE 1 PER COK STD PLAN CK-D.07.
- $\overline{(6)}$ INSTALL CATCH BASIN TYPE 2-48" PER COK STD PLAN CK-D.09.
- $\langle 7 \rangle$ install solid locking Lid with Cok storm drain logo per Cok std plan CK-D.18.
- $\langle 8 \rangle$ INSTALL DETENTION VAULT FACILITY PER DETAIL ON DWG. NO. DD1.
- $\langle 9 \rangle$ INSTALL FLOW SPLITTER PER DETAIL ON DWG. NO. DD2.
- INSTALL SOLID LOCKING LID WITH ANTI-SLIP COATING AND COK STORM DRAIN LOGO PER COK STD PLAN CK-D.18A, SUPPLIED BY EJ GROUP INC, OR APPROVED EQUAL. $\langle 10 \rangle$
- (11) REMOVE EXISTING PIPE.

Ē

∣∢

ဂလ

CHIN

¥

- 12 INSTALL CL. 50 DUCTILE IRON STORM SEWER PIPE 12 IN. DIAM. WITH
- $\overline{(13)}$ INSIDE OF CATCH BASIN TO BE EPOXY COATED FOR SCOUR PROTECTION.
- $\langle \overline{14} \rangle$ INSTALL PIPE THROUGH WALL PER DETAIL ON DWG. NO. WD1.
- (15) INSTALL PIPE ANCHOR AT EVERY PIPE JOINT PER DETAIL ON DWG. NO.
- $\overline{(16)}$ INSTALL MANHOLE TYPE 3-48" PER WSDOT STD PLAN B-15.60.

 $$\langle 17 \rangle$$ INSTALL SOLID LOCKING LID WITH COK STORM DRAIN LOGO PER COK STD PLAN CK-D.18A.

GENERAL NOTES:

- THE OFFSETS OF ALL CATCH BASINS ARE MEASURED TO THE CENTER OF STRUCTURE, UNLESS OTHERWISE NOTED.
- ALL EXISTING STORM DRAIN PIPE, EXISTING CATCH BASINS AND STORM MANHOLES SHOWN IN THESE PLANS ARE TO BE PROTECTED, UNLESS OTHERWISE NOTED.
- 3. ALL DRAINAGE STRUCTURES ARE PER COK STANDARD PLANS UNLESS NOTED OTHERWISE.
- 4. WALL UNDERDRAIN INVERTS AND SLOPES ARE APPROXIMATE AND PROFILES ARE NOT SHOWN ON THE PLANS. CONTRACTOR TO ADJUST WALL UNDERDRAIN SLOPES AND INVERTS AS NECESSARY TO AVOID UTILITY CONFLICTS. MINIMUM THE LENGTH OF THE WALL. CLEANOUTS SHALL BE SPACED EVERY 100 FEET ALONG THE LENGTH OF THE WALL. CLEANOUTS SHALL BE INSTALLED PER COK STD PLAN CK-D.05B.
- 5. ALL PIPE AND APPURTENANCES SHALL BE LAID ON A PROPERLY PREPARED FOUNDATION IN ACCORDANCE WITH WSDOT SPECIFICATIONS. THIS SHALL INCLUDE LEVELING AND COMPACTING THE TRENCH BOTTOM, THE TOP OF THE FOUNDATION MATERIAL, AND ANY REQUIRED PIPE BEDDING, TO A UNIFORM GRADE SO THAT THE ENTIRE PIPE IS SUPPORTED BY A UNIFORMLY DENSE UNYIELDING BASE.
- 6. ALL STORM SEWER PIPE SHALL BE SCHEDULE A SMOOTH INTERIOR WALL HIGH-PERFORMANCE POLYPROPYLENE STORM SEWER PIPE UNLESS OTHERWISE NOTED.
- ALL DRAINAGE STRUCTURES, SUCH AS CATCH BASINS, NOT LOCATED WITHIN A TRAVELED ROADWAY OR SIDEWALK, SHALL HAVE SOLID LOCKING LIDS. ALL DRAINAGE STRUCTURES ASSOCIATED WITH A PERMANENT DETENTION FACILITY SHALL HAVE SOLID LOCKING LIDS
- ALL PROPOSED CATCH BASINS SHALL HAVE VANED GRATES PER COK STD PLAN CK-D.15 AND CK-D.16 UNLESS NOTED OTHERWISE.

EXISTING STORM DRAIN PIPE

PROPOSED STORM DRAIN PIPE

REMOVE PIPE

WALL UNDERDRAIN

CATCH BASIN, TYPE 1

CATCH BASIN, TYPE 2

CONCRETE DETENTION VAULT

С

123 FIFTH AVENU

OF

DRAINAGE

PUBLIC WORKS DEPARTMENT

PI AN

HORIZONTAL SCALE: **—**___ 1" = 5' Vertical scale:

1" = 20'

40

SEC. 5, T. 25 N, R. 5 E, W.M.

			FILE DP3	ENGR. ##	REVIEW ##	SCALE AS SHOWN	D/ JANUAF	ATE RY 2025	OF KIR	κ_{j}
PERTEET 2707 COLBY AVENUE, SUITE 900 EVERETT WA 98201	811	S WAI MAN WASHING CHART							Ê	H D
425_552.7700 800.615.9900 Jan 06, 2025 - 4:20pm nancy.eaton X:\kirkland, city ofiProjects\20210013 - ne 85th st ped-bike\CADD\02 - plan s	Know what's below. Call before you dg.	23035307 Const environment WAL ENVIRONMENT 1/6/25		REVI	SION	BY	REVIEW		27SHING	10 ²

SEC. 5, T. 25 N, R. 5 E, W.M.

		FILE	ENGR.	REVIEW	SCALE	DATE	< KIR,
	WN IMAK	DP4	##	##	AS SHOWN	JANUARY 2025	OF MAL
\rightarrow PERTEET Ω	S OF WASHI CH						
							5 🎢 🤇
EVERETT, WA 98201	23035307						
425.252.7700 800.615.9900 Call bridge you dig.	TS GISTERS						2 House 2
	1/6/25						ASUNCTO
Jan 06, 2025 - 4:20pm nancy eaton X:\kirkland, city of\Projects\20210013 - ne 85th st ped-bike\CADD\02 - plan sheets\20210013 DP.dwg Layout Name: DP4	1/0/23	NO	REVI	SION	BY	REVIEW DATE	

APPENDIX F Geotechnical Report

SEE GEOTECHNICAL REPORT IN CONTRACT DOCUMENTS

APPENDIX G Operations and Maintenance

OPERATIONS AND MAINTENANCE OF DRAINAGE STRUCTURES

Routine maintenance is an important part of any stormwater control plan. The major facilities listed below should be inspected and maintained as described. All other drainage features should also be regularly inspected (every 6 months or more frequently) and maintained as needed to maintain the effectiveness of the drainage system as a whole.

Inspection Point	Inspection Frequency	Maintenance Threshold
Catch basins /	Yearly	Conveyance elements should be
Pipes/Control		cleaned when flow is impeded. It is
Structure/Flow		advisable to remove sediment from
Splitter		catch basins on a regular schedule,
		preferably every 2-3 years.
Detention Vault	Yearly, with casual observation	Clean vault when sediment depth
	on occasion.	reaches 6" in bottom of vault. Repair
		damage to vault immediately. Clear
		obstructions which impact vault
		function as soon as feasible.

NO. 3 – DETENTION TANKS AND VAULTS							
Maintenance Component	Defect or Problem	Conditions When Maintenance is Needed	Results Expected When Maintenance is Performed				
Site	Trash and debris	Any trash and debris which exceed 1 cubic foot per 1,000 square feet (this is about equal to the amount of trash it would take to fill up one standard size office garbage can). In general, there should be no visual evidence of dumping.	Trash and debris cleared from site.				
	Noxious weeds	Any noxious or nuisance vegetation which may constitute a hazard to County personnel or the public.	Noxious and nuisance vegetation removed according to applicable regulations. No danger of noxious vegetation where County personnel or the public might normally be.				
	Contaminants and pollution	Any evidence of contaminants or pollution such as oil, gasoline, concrete slurries or paint.	Materials removed and disposed of according to applicable regulations. Source control BMPs implemented if appropriate. No contaminants present other than a surface oil film.				
	Grass/groundcover	Grass or groundcover exceeds 18 inches in height.	Grass or groundcover mowed to a height no greater than 6 inches.				
Tank or Vault Storage Area	Trash and debris	Any trash and debris accumulated in vault or tank (includes floatables and non-floatables).	No trash or debris in vault.				
	Sediment accumulation	Accumulated sediment depth exceeds 10% of the diameter of the storage area for ½ length of storage vault or any point depth exceeds 15% of diameter. Example: 72-inch storage tank would require cleaning when sediment reaches depth of 7 inches for more than ½ length of tank.	All sediment removed from storage area.				
Tank Structure	Plugged air vent	Any blockage of the vent.	Tank or vault freely vents.				
	Tank bent out of shape	Any part of tank/pipe is bent out of shape more than 10% of its design shape.	Tank repaired or replaced to design.				
	Gaps between sections, damaged joints or cracks or tears in wall	A gap wider than ½-inch at the joint of any tank sections or any evidence of soil particles entering the tank at a joint or through a wall.	No water or soil entering tank through joints or walls.				
Vault Structure	Damage to wall, frame, bottom, and/or top slab	Cracks wider than ½-inch, any evidence of soil entering the structure through cracks or qualified inspection personnel determines that the vault is not structurally sound.	Vault is sealed and structurally sound.				
Inlet/Outlet Pipes	Sediment accumulation	Sediment filling 20% or more of the pipe.	Inlet/outlet pipes clear of sediment.				
	Trash and debris	Trash and debris accumulated in inlet/outlet pipes (includes floatables and non-floatables).	No trash or debris in pipes.				
	Damaged	Cracks wider than ½-inch at the joint of the inlet/outlet pipes or any evidence of soil entering at the joints of the inlet/outlet pipes.	No cracks more than ¼-inch wide at the joint of the inlet/outlet pipe.				

NO. 3 – DETENTION TANKS AND VAULTS							
Maintenance Component	Defect or Problem	Conditions When Maintenance is Needed	Results Expected When Maintenance is Performed				
Access Manhole	Cover/lid not in place	Cover/lid is missing or only partially in place. Any open manhole requires immediate maintenance.	Manhole access covered.				
	Locking mechanism not working	g mechanism Mechanism cannot be opened by one maintenance person with proper tools. Bolts cannot be seated. Self-locking cover/lid does not work.					
	Cover/lid difficult to remove	One maintenance person cannot remove cover/lid after applying 80 lbs of lift.	Cover/lid can be removed and reinstalled by one maintenance person.				
	Ladder rungs unsafe	Missing rungs, misalignment, rust, or cracks.	Ladder meets design standards. Allows maintenance person safe access.				
Large access doors/plate	Damaged or difficult to open	Large access doors or plates cannot be opened/removed using normal equipment.	Replace or repair access door so it can opened as designed.				
	Gaps, doesn't cover completely	Large access doors not flat and/or access opening not completely covered.	Doors close flat; covers access opening completely.				
	Lifting Rings missing, rusted	Lifting rings not capable of lifting weight of door or plate.	Lifting rings sufficient to lift or remove door or plate.				

NO. 4 – CONTROL STRUCTURE/FLOW RESTRICTOR							
Maintenance Component	Defect or Problem	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed				
Structure	Trash and debris	Trash or debris of more than ½ cubic foot which is located immediately in front of the structure opening or is blocking capacity of the structure by more than 10%.	No Trash or debris blocking or potentially blocking entrance to structure.				
		Trash or debris in the structure that exceeds $1/_3$ the depth from the bottom of basin to invert the lowest pipe into or out of the basin.	No trash or debris in the structure.				
		Deposits of garbage exceeding 1 cubic foot in volume.	No condition present which would attract or support the breeding of insects or rodents.				
	Sediment	Sediment exceeds 60% of the depth from the bottom of the structure to the invert of the lowest pipe into or out of the structure or the bottom of the FROP-T section or is within 6 inches of the invert of the lowest pipe into or out of the structure or the bottom of the FROP-T section.	Sump of structure contains no sediment.				
	Damage to frame and/or top slab	Corner of frame extends more than ¾ inch past curb face into the street (If applicable).	Frame is even with curb.				
		Top slab has holes larger than 2 square inches or cracks wider than $\frac{1}{4}$ inch.	Top slab is free of holes and cracks.				
		Frame not sitting flush on top slab, i.e., separation of more than 3⁄4 inch of the frame from the top slab.	Frame is sitting flush on top slab.				
	Cracks in walls or bottom	Cracks wider than ½ inch and longer than 3 feet, any evidence of soil particles entering structure through cracks, or maintenance person judges that structure is unsound.	Structure is sealed and structurally sound.				
		Cracks wider than ½ inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering structure through cracks.	No cracks more than ¹ / ₄ inch wide at the joint of inlet/outlet pipe.				
	Settlement/ misalignment	Structure has settled more than 1 inch or has rotated more than 2 inches out of alignment.	Basin replaced or repaired to design standards.				
	Damaged pipe joints	Cracks wider than ½-inch at the joint of the inlet/outlet pipes or any evidence of soil entering the structure at the joint of the inlet/outlet pipes.	No cracks more than ¼-inch wide at the joint of inlet/outlet pipes.				
	Contaminants and pollution	Any evidence of contaminants or pollution such as oil, gasoline, concrete slurries or paint.	Materials removed and disposed of according to applicable regulations. Source control BMPs implemented if appropriate. No contaminants present other than a surface oil film.				
	Ladder rungs missing or unsafe	Ladder is unsafe due to missing rungs, misalignment, rust, cracks, or sharp edges.	Ladder meets design standards and allows maintenance person safe access.				
FROP-T Section	Damage	T section is not securely attached to structure wall and outlet pipe structure should support at least 1,000 lbs of up or down pressure.	T section securely attached to wall and outlet pipe.				
		Structure is not in upright position (allow up to 10% from plumb).	Structure in correct position.				
		Connections to outlet pipe are not watertight or show signs of deteriorated grout.	Connections to outlet pipe are water tight; structure repaired or replaced and works as designed.				
		Any holes—other than designed holes—in the structure.	Structure has no holes other than designed holes.				
Cleanout Gate	Damaged or missing	Cleanout gate is missing.	Replace cleanout gate.				

NO. 4 – CONTROL STRUCTURE/FLOW RESTRICTOR							
Maintenance Component	Defect or Problem	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed				
		Cleanout gate is not watertight.	Gate is watertight and works as designed.				
		Gate cannot be moved up and down by one maintenance person.	Gate moves up and down easily and is watertight.				
		Chain/rod leading to gate is missing or damaged.	Chain is in place and works as designed.				
Orifice Plate	Damaged or missing	Control device is not working properly due to missing, out of place, or bent orifice plate.	Plate is in place and works as designed.				
	Obstructions	Any trash, debris, sediment, or vegetation blocking the plate.	Plate is free of all obstructions and works as designed.				
Overflow Pipe	Obstructions	Any trash or debris blocking (or having the potential of blocking) the overflow pipe.	Pipe is free of all obstructions and works as designed.				
	Deformed or damaged lip	Lip of overflow pipe is bent or deformed.	Overflow pipe does not allow overflow at an elevation lower than design				
Inlet/Outlet Pipe	Sediment accumulation	Sediment filling 20% or more of the pipe.	Inlet/outlet pipes clear of sediment.				
	Trash and debris	Trash and debris accumulated in inlet/outlet pipes (includes floatables and non-floatables).	No trash or debris in pipes.				
	Damaged	Cracks wider than ½-inch at the joint of the inlet/outlet pipes or any evidence of soil entering at the joints of the inlet/outlet pipes.	No cracks more than ¼-inch wide at the joint of the inlet/outlet pipe.				
Metal Grates (If Applicable)	Unsafe grate opening	Grate with opening wider than 7/8 inch.	Grate opening meets design standards.				
	Trash and debris	Trash and debris that is blocking more than 20% of grate surface.	Grate free of trash and debris.				
	Damaged or missing	Grate missing or broken member(s) of the grate.	Grate is in place and meets design standards.				
Manhole Cover/Lid	Cover/lid not in place	Cover/lid is missing or only partially in place. Any open structure requires urgent maintenance.	Cover/lid protects opening to structure.				
	Locking mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts cannot be seated. Self-locking cover/lid does not work.	Mechanism opens with proper tools.				
	Cover/lid difficult to Remove	One maintenance person cannot remove cover/lid after applying 80 lbs. of lift.	Cover/lid can be removed and reinstalled by one maintenance person.				
NO. 5 – CATCH BASINS AND MANHOLES							
-----------------------------------	------------------------------------	---	---				
Maintenance Component	Defect or Problem	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed				
Structure	Sediment	Sediment exceeds 60% of the depth from the bottom of the catch basin to the invert of the lowest pipe into or out of the catch basin or is within 6 inches of the invert of the lowest pipe into or out of the catch basin.	Sump of catch basin contains no sediment.				
	Trash and debris	Trash or debris of more than $\frac{1}{2}$ cubic foot which is located immediately in front of the catch basin opening or is blocking capacity of the catch basin by more than 10%.	No Trash or debris blocking or potentially blocking entrance to catch basin.				
		Trash or debris in the catch basin that exceeds $^{1/_{3}}$ the depth from the bottom of basin to invert the lowest pipe into or out of the basin.	No trash or debris in the catch basin.				
		Dead animals or vegetation that could generate odors that could cause complaints or dangerous gases (e.g., methane).	No dead animals or vegetation present within catch basin.				
		Deposits of garbage exceeding 1 cubic foot in volume.	No condition present which would attract or support the breeding of insects or rodents.				
	Damage to frame and/or top slab	Corner of frame extends more than ¾ inch past curb face into the street (If applicable).	Frame is even with curb.				
		Top slab has holes larger than 2 square inches or cracks wider than 1/4 inch.	Top slab is free of holes and cracks.				
		Frame not sitting flush on top slab, i.e., separation of more than 3⁄4 inch of the frame from the top slab.	Frame is sitting flush on top slab.				
	Cracks in walls or bottom	Cracks wider than ½ inch and longer than 3 feet, any evidence of soil particles entering catch basin through cracks, or maintenance person judges that catch basin is unsound.	Catch basin is sealed and is structurally sound.				
		Cracks wider than ½ inch and longer than 1 foot at the joint of any inlet/outlet pipe or any evidence of soil particles entering catch basin through cracks.	No cracks more than ¹ / ₄ inch wide at the joint of inlet/outlet pipe.				
	Settlement/ misalignment	Catch basin has settled more than 1 inch or has rotated more than 2 inches out of alignment.	Basin replaced or repaired to design standards.				
	Damaged pipe joints	Cracks wider than ½-inch at the joint of the inlet/outlet pipes or any evidence of soil entering the catch basin at the joint of the inlet/outlet pipes.	No cracks more than ¼-inch wide at the joint of inlet/outlet pipes.				
	Contaminants and pollution	Any evidence of contaminants or pollution such as oil, gasoline, concrete slurries or paint.	Materials removed and disposed of according to applicable regulations. Source control BMPs implemented if appropriate. No contaminants present other than a surface oil film.				
Inlet/Outlet Pipe	Sediment accumulation	Sediment filling 20% or more of the pipe.	Inlet/outlet pipes clear of sediment.				
	Trash and debris	Trash and debris accumulated in inlet/outlet pipes (includes floatables and non-floatables).	No trash or debris in pipes.				
	Damaged	Cracks wider than ½-inch at the joint of the inlet/outlet pipes or any evidence of soil entering at the joints of the inlet/outlet pipes.	No cracks more than ¼-inch wide at the joint of the inlet/outlet pipe.				

NO. 5 – CATCH BASINS AND MANHOLES			
Maintenance Component	Defect or Problem	Condition When Maintenance is Needed	Results Expected When Maintenance is Performed
Metal Grates (Catch Basins)	Unsafe grate opening	Grate with opening wider than $^{7}/_{8}$ inch.	Grate opening meets design standards.
	Trash and debris	Trash and debris that is blocking more than 20% of grate surface.	Grate free of trash and debris.
	Damaged or missing	Grate missing or broken member(s) of the grate. Any open structure requires urgent maintenance.	Grate is in place and meets design standards.
Manhole Cover/Lid	Cover/lid not in place	Cover/lid is missing or only partially in place. Any open structure requires urgent maintenance.	Cover/lid protects opening to structure.
	Locking mechanism Not Working	Mechanism cannot be opened by one maintenance person with proper tools. Bolts cannot be seated. Self-locking cover/lid does not work.	Mechanism opens with proper tools.
	Cover/lid difficult to Remove	One maintenance person cannot remove cover/lid after applying 80 lbs. of lift.	Cover/lid can be removed and reinstalled by one maintenance person.

NO. 6 – CONVEYANCE PIPES AND DITCHES			
Maintenance Component	Defect or Problem	Conditions When Maintenance is Needed	Results Expected When Maintenance is Performed
Pipes	Sediment & debris accumulation	Accumulated sediment or debris that exceeds 20% of the diameter of the pipe.	Water flows freely through pipes.
	Vegetation/roots	Vegetation/roots that reduce free movement of water through pipes.	Water flows freely through pipes.
	Contaminants and pollution	Any evidence of contaminants or pollution such as oil, gasoline, concrete slurries or paint.	Materials removed and disposed of according to applicable regulations. Source control BMPs implemented if appropriate. No contaminants present other than a surface oil film.
	Damage to protective coating or corrosion	Protective coating is damaged; rust or corrosion is weakening the structural integrity of any part of pipe.	Pipe repaired or replaced.
	Damaged	Any dent that decreases the cross section area of pipe by more than 20% or is determined to have weakened structural integrity of the pipe.	Pipe repaired or replaced.
Ditches	Trash and debris	Trash and debris exceeds 1 cubic foot per 1,000 square feet of ditch and slopes.	Trash and debris cleared from ditches.
	Sediment accumulation	Accumulated sediment that exceeds 20% of the design depth.	Ditch cleaned/flushed of all sediment and debris so that it matches design.
	Noxious weeds	Any noxious or nuisance vegetation which may constitute a hazard to County personnel or the public.	Noxious and nuisance vegetation removed according to applicable regulations. No danger of noxious vegetation where County personnel or the public might normally be.
	Contaminants and pollution	Any evidence of contaminants or pollution such as oil, gasoline, concrete slurries or paint.	Materials removed and disposed of according to applicable regulations. Source control BMPs implemented if appropriate. No contaminants present other than a surface oil film.
	Vegetation	Vegetation that reduces free movement of water through ditches.	Water flows freely through ditches.
	Erosion damage to slopes	Any erosion observed on a ditch slope.	Slopes are not eroding.
	Rock lining out of place or missing (If Applicable)	One layer or less of rock exists above native soil area 5 square feet or more, any exposed native soil.	Replace rocks to design standards.

APPENDIX H Drainage Design Criteria

DESIGN CRITERIA MATRIX Drainage Analysis & Design Criteria Summary

Project Name:	NE 85th Street Ped/Bike Connection 144th Avenue NE to 6th Street	Perteet Job No: Date:	20210013 May 5th, 2023
Project Manager:	Brian Caferro, P.E.		
Drainage Engineer:	Thomas Cheong, E.I.T.		
Client: City or County:	City of Kirkland Kirkland		

Project Description:

This project will create the pedestrian/bike connection to the Cross Kirkland Corridor (CKC) on the south side of Northeast 85th Street between 114th Avenue and 6th Street.

A. Summary of Recommendations

Provided below is a summary of the major drainage design standards which will be followed on the Northeast 85th Street Project.

- 2021 King County Surface Water Design Manual (KCSWDM)
- January 1, 2023 City of Kirkland Addendum to the 2021 KCSWDM
- 2012 Low Impact Development Technical Guidance Manual for Puget Sound (LID Manual)
- Flow Control and Water Quality Treatment Model: MGSFlood V4 or WWHM.
- Conveyance Model: StormShed3G Rational method.

B. Documentation Summary of Drainage Design Standards

Design Element	Standard Requirement	Source
Threshold Analysis/	This project triggers a full drainage review and shall follow the threshold and core requirement determination	KCSWDM pg. 1-15
Minimum Requirements:	procedures as outlined in Section 1.1 of the KCSWDM.	
Hydrologic Model:		
Flow Control:	Continuous Simulation Modeling, MGS Flood or WWHM	KCSWDM 3-7
Water Quality:	Continuous Simulation Modeling, MGS Flood or WWHM	KCSWDM 3-7
Conveyance:	Rational Method (StomShed3G): For areas under 10 acres	KCSWDM 3-11
	SBUH Method (StormShed3G): For areas 10 acres or larger	KCSWDM 3-11
	 Minimum Time of Concentration (Tc) is 6.3 minutes	KCSWDM 3-13
Design Storm Events:		
Detention:	Stormwater discharges shall match developed discharge durations to pre-developed durations for the range of pre-	KCSWDM pg. 1-45
	developed discharge rates from 50% of the 2-year peak flow up to the full 50-year peak flow. The predeveloped	
	condition to be matched shall be a historic (forested) land cover unless the project meets the exceptions as listed in	
	the KCSWDM.	
Conveyance:	Storm Drains: New pipe systems shall be designed with sufficient capacity to convey and contain (at minimum) the	KCSWDM pg 1-55
Conveyance.	25-year peak flow, assuming developed conditions for onsite tributary areas and existing conditions for any offsite	1.25 W Divi pg. 1-55
	tributary areas.	
	<u>Culverts:</u> New culverts shall be designed with sufficient capacity to meet headwater requirements in Section 4.3.1	KCSWDM pg. 1-55
	and convey (at minimum) the 25-year peak flow, assuming developed conditions for onsite tributary areas and	
	existing conditions for any offsite tributary areas. Must also convey as much as the 100-year peak flow as is	
	necessary to preclude creating or aggravating severe flooding or severe erosion problems.	
	Ditches/Channels: New ditches/channels shall be designed with sufficient capacity to convey and contain at	
	minimum, the 25- year peak flow, assuming developed conditions for onsite tributary areas and existing conditions	KCSWDM pg. 1-56
	for any offsite tributary areas. Must also convey as much of the 100-year peak flow as is necessary to preclude	
	creating or aggravating a severe flooding or severe erosion problem.	
Water Quality:	Flow Based - Preceding Detention Facilities or when Detention Facilities are not required:	KCSWDM pg. 6-17
	The flow rate at or below which 91% of the runoff volume, as estimated by an approved continuous simulation	

Design Element	Standard Requirement	Source
	runoff model, will be treated.	
	<u>Flow Based - Downstream of Detention Facilities:</u> The full 2-year release rate from the detention facility.	KCSWDM pg. 6-17
	<u>Volume Based:</u> The water quality design storm volume, when using an approved continuous runoff model, shall be equal to the simulated daily volume that represents the upper limit of the range of daily volumes that accounts for 91% of the entire runoff volume over a multi-decade period of record.	KCSWDM pg. 6-19
	<u>Tightline Systems Traversing Steep Slopes:</u> New tightline conveyance systems traversing slopes that are steeper than 15% and greater than 20 feet in height, or are within a steep slope hazard area as defined in KCC 21A.06, shall be designed with sufficient capacity to convey and contain (at minimum) the 100-year peak flow, assuming full build-out conditions for all tributary areas, both onsite and offsite. Tightline systems shall be designed as detailed in Section 4.2.2.	KCSWDM pg. 1-56
Precipitation Data	Rational Method:	KCSWDM pg.3-15
Source:	Rainfall intensity coefficients: Table 3.2.1.B	
	Runoff coefficients ("C" values): Table 3.2.1.A	
	<u>SBUH Method (Type 1A storm):</u> Precipitation isopoluvial maps: Figures 3.2.1.A through 3.2.1.D 2 yr: 1.80" 10 yr: 2.70" 25 yr: 3.10" 100 yr: 3.70"	KCSWDM pgs. 3-16 to 3-19
	<u>Continuous Simulation:</u> Extended Time Series Region Map: Puget East 40 in MAP	Per Lat. & Long. location
Pre-Developed	Historic site conditions.	KCSWDM pg. 1-45
Conditions: (Forested, etc.)		
<u>Criteria for Storm</u> <u>Conveyance Pipe</u>	 Acceptable pipe types are PVC 3034, Ductile Iron, HDPE for elevated use, or C900. All pipes shall have a minimum 18 inches of cover. If there is less than 18 inches of cover the pipe shall be ductile iron (Class 50) or C-900. Storm drain pipe laid deeper than 16 feet must be cement lined, ductile iron pipe, Class 50. Minimum pipe size = 12" main line (0.5% min slope), 8" curb inlet crossing (1.0% min slope), 6" side line (2.0% slope), 6" perforated drain pipe. Minimum velocity at full flow shall be 3 fps. Minimum horizontal clearance between storm drainage, sanitary sewer and water pipes shall be 5 feet. Minimum vertical clearance where storm drainage, sanitary sewers and water mains cross shall be 18 inches between the pipes, unless an alternative design has been specifically approved by the development 	City of Kirkland Storm Drainage Pre-Approved Notes, Design Criteria and Plans

Design Element	Standard Requirement	Source
	engineer. 7. No bends are allowed in main lines. 8. A catch basin is required when there is a change in the flow-line slope, a minimum distance of 300', a change in pipe size, joining of two or more main lines, a side-line service connection and a change in pipe material type. CB Spacing: Maximum of 300 feet for grades less than 8 percent, maximum of 200 feet for grades from 8 to 12	
	percent and maximum of 150 feet for grades greater than 12 percent.	

APPENDIX I TIR WORKSHEET

Part 1 PROJECT OWNER AND PROJECT ENGINEER	Part 2 PROJECT LOCATION AND DESCRIPTION	
Project Owner City of Kirkland	Project Name <u>NE 85th Street Ped/Bike Connection</u>	
Address <u>123 5th Avenue</u> Kirkland, WA 98033	Location Township <u>25 N</u> Bange <u>5 F</u>	
Project Engineer Thomas Cheong	Section 5	
Company Perteet, Inc. Phone 206-438-4200	Site Address <u>NE 85th Street between 6th</u> Street and 114th Street.	
Part 3 TYPE OF PERMIT APPLICATION	Part 4 OTHER REVIEWS AND PERMITS	
 Landuse Services Subdivison / Short Subd. / UPD Building Services M/F / Commerical / SFR Clearing and Grading Right-of-Way Use Other 	 DFW HPA COE 404 DOE Dam Safety FEMA Floodplain COE Wetlands Other 	
Part 5 PLAN AND REPORT INFORMATION		
Technical Information Report	Site Improvement Plan (Engr. Plans)	
Type of Drainage Review Full Targeted / (circle): Large Site	Type (circle one): Full Modified / Small Site	
Date (include revision <u>9/8/2023</u> dates):	Date (include revision dates):	
Date of Final:	Date of Final:	
Part 6 ADJUSTMENT APPROVALS		
Type (circle one): Standard Complex / Preap	plication / Experimental / Blanket	
Description: (include conditions in TIR Section 2)		
Date of Approval:		

Part 7 MONITORING REQUIREMENTS		
Monitoring Required: Yes No	Describe:	
Completion Date:		

Part 8 SITE COMMUNITY AND DRAINAGE BASIN

Community Plan : _____ Special District Overlays:

Drainage Basin: <u>East Lake Washington - Bellevue North basin</u> Stormwater Requirements: <u>CR #1-CR #8, CR #9</u>

Part 9 ONSITE AND ADJACENT SENSITIVE AREAS		
River/Stream	Steep Slope	
Lake	Erosion Hazard	
U Wetlands	Landslide Hazard	
Closed Depression	Coal Mine Hazard	
Floodplain	Seismic Hazard	
Other	Habitat Protection	

Part 10 SOILS		
Soil Type Fill	Slopes	Erosion Potential
Glacial Till	5-7%	Low
Advanced Outwash	5-7%	Low
Glaciolacustrine	5-7%	Low
High Groundwater Table (within 5 feet) Sole Source Aquifer Other Seeps/Springs		
Additional Sheets Attached		

Part 11 DRAINAGE DESIGN LIMITATIONS	
REFERENCE Core 2 – Offsite Analysis Sensitive/Critical Areas SEPA	LIMITATION / SITE CONSTRAINT
 <u>Other</u> □ 	Infiltration infeasibility
Additional Sheets Attached	

Part 12 TIR SUMMARY SHEET	(provide one TIR Summary Sheet per Threshold Discharge Area)				
Threshold Discharge Area:					
(name or description)					
Core Requirements (all 8 apply)	CR #1-CR #8, CR #9				
Discharge at Natural Location	Number of Natural Discharge Locations:				
Offsite Analysis	Level: 1 (2) 3 dated: 02/28/2023				
Flow Control	Level: 1 (2) 3 or Exemption Number				
(incl. facility summary sheet)	Small Site BMPs				
Conveyance System	Spill containment located at:				
Erosion and Sediment Control	ESC Site Supervisor: Contact Phone: TBD during construction After Hours Phone:				
Maintenance and Operation	Responsibility: Private Public				
	If Private, Maintenance Log Required: Yes / No				
Financial Guarantees and	Provided: Yes No				
Liability					
Water Quality	Type: Basic / Sens. Lake / Enhanced Basicm / Bog				
(include facility summary sheet)	or Exemption NoExempt				
	Landscape Management Plan: Yes (No				
Special Requirements (as applicab	le)				
Area Specific Drainage	Type: CDA / SDO / MDP / BP / LMP / Shared Fac. / None				
Requirements	Name:				
Floodplain/Floodway Delineation	^I Type: Major / Minor / Exemption None				
	100-year Base Flood Elevation (or range):				
	Datum:				
Flood Protection Facilities	Describe: Not Applicable				
Source Control	Describe landuse: Roadway				
(comm./industrial landuse)	Describe any structural controls: Not Applicable				

Maintenance Agreement: Yes / No with whom?

Fail 13 ERUSION AND SEDIMENT CONTROL	
MINIMUM ESC REQUIREMENTS DURING CONSTRUCTION	MINIMUM ESC REQUIREMENTS AFTER CONSTRUCTION
Clearing Limits	Stabilize Exposed Surfaces
Cover Measures	Remove and Restore Temporary ESC Facilities
Perimeter Protection	Clean and Remove All Silt and Debris Ensure
Traffic Area Stabilization	Operation of Permanent Facilities
Sediment Retention	Flag Limits of SAO and open space preservation areas
Surface Water Control	Other
Dust Control	
Construction Sequence	

Part 14 STORMWATER FACILITY DESCRIPTIONS (Note: Include Facility Summary and Sketch)					
Flow Control	Type/Description		Water Quality	Type/Description	
Detention	Detention Vault		Biofiltration		
Infiltration			U Wetpool		
Regional Facility			Media Filtration		
Ghared Facility			Oil Control		
Gamma Small Site BMPs			Spill Control		
Other			Gamma Site BMPs		
			Other		

 Drainage Easement Access Easement Native Growth Protection Covenant Cast in Place Vault Retaining Wall Bockery > 4' High 	Part 15 EASEMENTS/TRACTS	Part 16 STRUCTURAL ANALYSIS
Tract Structural on Steep Slope Other Other	 Drainage Easement Access Easement Native Growth Protection Covenant Tract Other 	 Cast in Place Vault Retaining Wall Rockery > 4' High Structural on Steep Slope Other

Part 17 SIGNATURE OF PROFESSIONAL ENGINEER

I, or a civil engineer under my supervision, have visited the site. Actual site conditions as observed were incorporated into this worksheet and the attached Technical Information Report. To the best of my knowledge the information provided here is accurate.

Signed/Date