NOTES:
1. FOR GENERAL STRUCTURAL NOTES SEE DRAWING TLC-S-101.
2. ALL DRILLING OPERATIONS FOR DRILLED SHAFT FOUNDATIONS SCHEDULED ON
 THIS SHEET SHALL BE MONITORED BY THE RESIDENT ENGINEER.
3. THESE NOTES APPLY ONLY TO THE DRILLED SHAFT TYPE DETAILED ON
 THIS SHEET.
4. DRILLED SHAFT TOP ELEVATIONS SHALL BE TOLERATED TO THE GEOMETRICAL
 EPOXYED POUR PLACEMENT OF REINFORCING STEEL AND CONCRETE.
5. THE EXACT LOCATION AND DEPTH OF ALL UNDERGROUND UTILITIES SHALL
 BE CONFIRMED BY THE CONSTRUCTION PRIOR TO CONSTRUCTION.
6. PRIOR TO CASTING CONNECTION TO PILE CAP, CONTRACTOR SHALL REMOVE
 LAUNCH DOWNS TO SOUND CONCRETE AT THE CONSTRUCTION JOINT AND
 SHALL CLEAN EXPOSED REINFORCEMENT.
7. LAY LENGTH FOR TRANSVERSE REINFORCEMENT SHALL BE 48 BAR
 REVERSIBLE YIELD.
8. STEEL PIPES PROVIDED AS ACCESS TUBES FOR CCI TESTING SHALL BE IN
 ACCORDANCE WITH THE CONTRACT SPECIFICATIONS.
9. THE CONTRACTOR SHALL PROVIDE ADEQUATE SPACING TO MAINTAIN THE
 REINFORCEMENT CASE STABILITY AT ALL CONSTRUCTION STAGES.
10. LAY PANELS SHALL NOT BE PERMITTED FOR LONGITUDINAL REINFORCEMENT
 MECHANICAL SPIRES ARE PERMITTED WHERE THEY ARE GLUED AT 24" IN
 AN INDIVIDUAL BUNDLE.
11. ALL REELS FOR STEEL CASING SHALL BE COMPLETE JOINT REVERSIBILITY
 PROMISE REELS.
12. AS-BUILT LOCATIONS AND ELEVATIONS OF TOP OF SHAFTS SHALL BE
 SUBMITTED TO ENGINEER ON RECOGNIZANCE PRIOR TO PROCEEDING WITH
 ABUTMENT CONSTRUCTION.
13. PROVIDE "C" CLEAR FROM TOP OF SPIRAL TO LOWEST POINT OF
 CONSTRUCTION JOINT. VERTICAL SPIRAL IN SPIRAL TO ALLOW ENGAGEMENT OF
 BOTTOM HAT OF PILE CAP REINFORCEMENT, SHALL NOT EXCEED 8" AT A1
 OR 6" AT A2.
NOTES:
1. FOR GENERAL STRUCTURAL NOTES SEE DWG TLC-S-101.
2. ALL DRILLED SHADT DETAILS SHALL BE MONITORED BY THE PROJECT ENGINEER.
3. THESE DETAILS MAY ONLY BE USED FOR SHAFT DETAILS TO THE SHEET.
4. ALL DRILLED SHADT DETAILS SHALL BE DRAWN TO SCALE.
5. THE EXACT LOCATION AND LENGTH OF ALL UNDERGROUND STRUCTURES SHALL BE CORRECTED BY THE CONTRACTOR PRIOR TO CONSTRUCTION.
6. PRIOR TO CASTING CONCRETE TO COLUMN REINFORCEMENT, CONTRACTOR SHALL PROVIDE CONCRETE SAMPLES TO THE CONSTRUCTION SUPPLIER AND SHALL ENTER DATA AT CONSTRUCTION SITE.
7. CONCRETE SHALL BE DELIVERED TO THE CONSTRUCTION SITE.
8. ALL REINFORCEMENT SHALL BE COMPLETELY GROUNDED TO SMOOTH CONCRETE AT THE CONSTRUCTION SITE.
9. ALL STEEL CASING SHALL BE COMPLETELY GROUNDED TO SMOOTH CONCRETE AT THE CONSTRUCTION SITE.
10. ALL STEEL CASING SHALL BE COMPLETELY GROUNDED TO SMOOTH CONCRETE AT THE CONSTRUCTION SITE.
11. ALL STEEL CASING SHALL BE COMPLETELY GROUNDED TO SMOOTH CONCRETE AT THE CONSTRUCTION SITE.
ARCH RIB END RADIUS GEOMETRY VIEWED WITHIN ARCH PLANE

SCALE 1" = 20'

STEEL SUBASSEMBLY KEYPLAN

SCALE 1" = 10'

STEEL ELEVATION

SCALE 1" = 10'

FRAMING PLAN

SCALE 1" = 10'

SECTION

SCALE 1" = 20'

NOTES:
1. FOR HANGER TYPES A, B AND C DETAILS, SEE ENS TEC-5-131.
2. SHEAR CONNECTORS INSTALLED PERPENDICULAR TO TE-CHORD PIPES ALONG SPAAN 3 ONLY.

CITY OF KIRKLAND
DEPARTMENT OF PUBLIC WORKS
125 FIFTH AVENUE KIRKLAND, WA 98033
(425) 587-3800 www.kirklandwa.gov

49664
PROFESSIONAL ENGINEER
STATE OF WASHINGTON
STRUCTURAL ENGINEER
MATTHEW D.BAUGHMAN

2019 DEC 06
2019 DEC 06
NOTES:

1. FOR GENERAL STRUCTURAL NOTES SEE DRAW TOL-S-101.

2. MASONRY PLATE SHALL BE CONNECTED TO SUBSTRUCTURE USING 4 COUNTERSUNK 5/16 IN. DIAM. ANCHOR RODS AT TIMES 2 AND 4 BEARING PLATES AND SEE OF ANCHOR RODS MAY BE REDUCED AT OTHER BEARINGS PER DETAILS SHOWN.

3. BEARING ASSY. PLATES SHALL BE A MINIMUM 3/4 IN. THICK. ANCHOR RODS SHALL BE 1/2 IN. DIA. NOT LESS THAN 1/2 IN. LONG.

4. CONTRACTOR SHALL ESTABLISH BEARING PLATE ELEVATIONS BY REDEEMING THE ACTUAL BEARING THICKNESS FROM THE TOP OF BEARING PLATES.

5. LENGTH AND SIZE OF WELD CONNECTING SOLE PLATE TO END BEAM SHALL BE DETERMINED BY THE BEARING SUPPLIER'S DESIGN.

6. ANCHOR RODS MAY BE INSTALLED USING ELECTRODES OR COUPLERS PER MANUFACTURER'S REQUIREMENTS.
NOTES:
1. FOR GENERAL STRUCTURAL NOTES SEE DRAWING TLS-5-101.
2. GRATING SHALL BE HOT DIPPED GALVANIZED WELDED BAR STEEL GRATING WITH 1/2" DEEP BEARING BARS 1" O.C. G.C.
3. GRATING SHALL BE CUT FROM 3 FOOT WIDE STANDARD GRATING WITH EXPOSED EDGE BRUSH PAINTED WITH CALCAIN OR APPROVED EQUIVALENCE.
4. FRAMING ANGLES AND SUPPORT PLATES SHALL BE PAINTED THE SAME DARK GRAY COLOR AS THE FRAMING ANGLES.
5. GRATING CURVES AND BOLTS PER MANUFACTURER REQUIREMENTS.
Thermoplastic pattern may be precut from sheets and applied to deck.

Thermoplastic positive circles to be white and background void to be royal blue.

Grid dimensions:

Legend:
- ○ R=15"
- ○ R=20"
- ○ R=25"
- ○ R=30"

Notes:
1. For general structural notes, see OMD TLC-013.
2. Thermoplastic pattern may be precut from sheets and applied to deck.
3. For information regarding application of thermoplastic application, see special provisions.
4. Thermoplastic positive circles to be white and background void to be royal blue.
THERMOPLASTIC PATTERN MAY BE PRECUT FROM SHEETS AND APPLIED TO DECK.

THERMOPLASTIC POSITIVE CIRCLES TO BE WHITE AND BACKGROUND VOID TO BE ROYAL BLUE.

NOTES:
1. FOR GENERAL STRUCTURAL NOTES, SEE Dwg T.C.A-35.
2. THERMOPLASTIC PATTERN MAY BE PRECUT FROM SHEETS AND APPLIED TO DECK.
3. FOR INFORMATION REGARDING APPLICATION OF THERMOPLASTIC PATTERN, SEE SPECIAL PROVISIONS.
4. THERMOPLASTIC POSITIVE CIRCLES TO BE WHITE AND BACKGROUND VOID TO BE ROYAL BLUE.
SUGGESTED CONSTRUCTION STAGING:

1. CLOSE CHEW CREEK BETWEEN TOTEN LAKE RD NE AND 120TH AV NE FOR CONSTRUCTION EROSION AND CONSTRUCT TEMPORARY TERRY SOUTH OF NE 124TH ST ALONG EAST EDGE OF CHEW CREEK.

2. INSTALL DETOUR ROUTES FOR CHEW CREEK TRAIL CLOSURES AND TEMPORARY FENCING INCLUDING HIGH VISIBILITY FENCING.

3. INSTALL ENVIRONMENTAL PROTECTION & TEMPORARY EROSION CONTROL:
 a. INSTALL TEMPORARY EROSION CONTROL MEASURES AS SHOWN IN THE PLANS OR APPROVED CONSTRUCTION SEQUENCES.
 b. CONDUCT CRASH CHECK VIRTUALINI.
 c. INSTALL temporary sheet pile locations for P6-410.

4. INSTALL TEMPORARY STORM DRAIN BYPASS.

5. PLACE-PREPARE STEELWORK SUBASSEMBLIES IN SHOP, PRIME AND PAINT, MARKING OFF FIELD SHEET LOCATIONS. INSTALL PIPEFRAME PANELS AT PLANT.

6. CONSTRUCTION ACCESS:
 a. SOUTH APPROACH ACCESS FROM 120TH PL NE AND OR 120TH AV NE. ACCESS FROM NE 124TH ST.
 b. TRAFFIC ISLAND ACCESS FROM TOTEN LAKE RD SOUTH OF 124TH AV NE.
 c. INSTALL TEMP DRAIN ACCESS FROM TOTEN LAKE RD NORTH OF 124TH AV NE.
 d. INSTALL THE PAVEMENT FOR TRUCK ACCESS.
 e. TRUCK MUST BE MAINTAINED IN WORKING CONDITION FOR USES THROUGHOUT CONSTRUCTION.
 f. NIGHT CONSTRUCTION ACCESS.

7. CLEAN DESIGNATED AREAS ACROSS THE SITE AND STORED MATERIAL FOR RESTORATION AS REQUIRED. CLEAR AND DRAIN RIDGEMOUNT DESIGNATED AREAS FOR SPECIAL PREPARATIONS.

8. CONSTRUCT ARMS AT A & 412 AND PENS P5 - P6. SEE DOC TLC-5-122 AND TLC-5-123.
 a. TEMPORARY SHEET PILE LOCATIONS.
 b. CONFORM PILE & PRE-FABRICATED SHEET PILE LOCATION.
 c. CONSTRUCT STEM PILE CLEARANCES FROM THE P5 AND SCL OVERHEAD POWER LINES.
 d. CONSTRUCT STEELWORK MATCH AND FEMALE CAPS.
 e. CONSTRUCT REMEDIES FOR FIELDS AND AREAS.

9. PREPARE STEEL ASSEMBLY STAGING AREAS.
 a. PLACE THE AREA SOUTH OF P5 TO UTILIZE AS A STEEL ASSEMBLY AREA FOR ROADWAY SPANS.
 b. PLACE THE AREA NORTH OF P5 TO UTILIZE AS A STEEL ASSEMBLY AREA FOR OVERHEAD SPANS.

10. ELECTION SEQUENCE OF SPANS 2-11:
 a. DRAW PROPOSED ELECTION SEQUENCE FOR EACH OF THE SPANS.

CITY OF KIRKLAND
DEPARTMENT OF PUBLIC WORKS
125 FIFTH AVENUE KIRKLAND, WA 98033
(425) 587-3800 www.kirklandwa.gov
SUGGESTED CONSTRUCTION STAGING CONTINUED

10. Erection Sequence of Spans 2 to 11 (Cont.)

- Place Span 10 & 11 in an assembled cat to align the crown beam to maintain sufficient distance from the pile cap form. Use 23' long steel beams to provide support. (See Section 6.3.5)
- Place Spans 9 & 8 in a similar manner. Position Spans 9 & 8 in the correct lifting positions and secure them in the correct position on the bridge and the temporary scaffolding.
- Install horizontal braces between Spans 10 & 11 to prevent movement.
- Assemble Span 7 in the correct position and secure it to the temporary scaffolding.
- Assemble Span 6 in the correct position and secure it to the temporary scaffolding.
- Assemble Span 5 in the correct position and secure it to the temporary scaffolding.
- Assemble Span 4 in the correct position and secure it to the temporary scaffolding.
- Assemble Span 3 in the correct position and secure it to the temporary scaffolding.
- Assemble Span 2 in the correct position and secure it to the temporary scaffolding.

11. Assemble Span 1 steelwork and lift into place and connect to Span 2 before connecting the steelwork to the existing bridge.

12. MSE Wall Construction:
 - Construct east and west MSE walls for south approach ramp.
 - Construct north approach MSE wall.

13. Conventional MSE wall construction: Place precast concrete deck panels across all spans from A1 to F4 and A12 to F4. (See Section 6.3.5)

14. Complete pour sequence in two stages:
 - Pour concrete in the middle of the frames and on the ends of the frames.
 - Pour concrete in the middle of the frames and on the ends of the frames.
 - Pour concrete in the middle of the frames and on the ends of the frames.
 - Pour concrete in the middle of the frames and on the ends of the frames.
 - Pour concrete in the middle of the frames and on the ends of the frames.

15. Install corbel brackets and railing.

16. Install conduit, cable, and electrical equipment.

17. Complete temporary construction access and temporary access and drainage materials.

18. Complete permanent construction access and permanent access and drainage materials.

19. Install permanent railings and guardrails.

20. Roadway:
 - Pour concrete in the middle of the frames and on the ends of the frames.
 - Pour concrete in the middle of the frames and on the ends of the frames.
 - Pour concrete in the middle of the frames and on the ends of the frames.
 - Pour concrete in the middle of the frames and on the ends of the frames.
 - Pour concrete in the middle of the frames and on the ends of the frames.
Revise General Note 7 to read:
"SEE SPECIAL PROVISIONS FOR HANDLING, TESTING, CHARACTERIZATION, AND DISPOSAL OF IMPACTED SOILS."

Revise General Note 10 to read:
"SEE APPENDIX TO PROJECT MANUAL FOR LABORATORY ANALYSIS AND TEST RESULTS OF IMPACTED SOILS."
Revise General Note 7 to read:

"SEE SPECIAL PROVISIONS FOR HANDLING,
TESTING, CHARACTERIZATION, AND
DISPOSAL OF IMPACTED SOILS."

Revise General Note 10 to read:

"SEE APPENDIX TO PROJECT MANUAL FOR
LABORATORY ANALYSIS AND TEST
RESULTS OF IMPACTED SOILS."
Revise General Note 7 to read:
"SEE SPECIAL PROVISIONS FOR HANDLING, TESTING, CHARACTERIZATION, AND DISPOSAL OF IMPACTED SOILS."
Revise General Note 7 to read:
"SEE SPECIAL PROVISIONS FOR HANDLING, TESTING, CHARACTERIZATION, AND DISPOSAL OF IMPACTED SOILS."

Revise General Note 10 to read:
"SEE APPENDIX TO PROJECT MANUAL FOR LABORATORY ANALYSIS AND TEST RESULTS OF IMPACTED SOILS."

NOTE:
- See Appendix to Project Manual for Laboratory Analysis and Test Results of Impacted Soils.
Revise General Note 7 to read:
"SEE SPECIAL PROVISIONS FOR HANDLING, TESTING, CHARACTERIZATION, AND DISPOSAL OF IMPACTED SOILS."

Revise General Note 10 to read:
"SEE APPENDIX TO PROJECT MANUAL FOR LABORATORY ANALYSIS AND TEST RESULTS OF IMPACTED SOILS."

Construction Notes:
1. Excavation
2. Inlet Protection (KG E11)
3. Temporary Storm Drain Bypass
4. Remove & Salvage Existing
5. Remove Existing

Keymap:
- Cross Kirkland Corridor
- Temporary Storm Drain Bypass
- Force Main / Pumped Stormwater

City of Kirkland
Demolition and Erosion Control Plan 5

City of Kirkland
123 Fifth Avenue
Kirkland, WA 98033
(425) 587-3800 www.kirklandwa.gov
Revise General Note 7 to read:
"SEE SPECIAL PROVISIONS FOR HANDLING, TESTING, CHARACTERIZATION, AND DISPOSAL OF IMPACTED SOILS."

Revise General Note 10 to read:
"SEE APPENDIX TO PROJECT MANUAL FOR LABORATORY ANALYSIS AND TEST RESULTS OF IMPACTED SOILS."
<table>
<thead>
<tr>
<th>NO.</th>
<th>WT.</th>
<th>BT.</th>
<th>CNM.</th>
<th>QTY.</th>
<th>DETAIL</th>
<th>EXPOSURE</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
1. All plantings, other than Sods, are 80% as pure based upon seeds.
SURVEY NOTES

1) EXISTING CONDITIONS SHOWN ALONG TOTEM LAKE BLVD NE (CURB ALIGNMENT, SIDEWALK, STRIPED LANE, AND DRAINAGE STRUCTURE) ARE BASED ON PROPOSED IMPROVEMENTS SHOWN IN THE 85X85 SHEET FOR THE CITY'S TOTEM LAKE GATEWAY PROJECT (CP NO. STK0260050).

NOTE:
1. PROVIDE PLANTS TO BE PLANTED PRIOR TO THE COMPLETE PROJECT SITE THROUGHOUT THE COURSE OF THE PROJECT.
2. PROVIDE SHOULDER LANDSCAPING AND INSTALL SHOULDER PLANTING IN THE MOW.
3. PROVIDE SHOULDER LANDSCAPING AND INSTALL SHOULDER PLANTING IN THE MOW.
4. PROVIDE SHOULDER LANDSCAPING AND INSTALL SHOULDER PLANTING IN THE MOW.

CORRIDOR UNDERSTORY PLANT SCHEDULE
SEE SHEET L-200 FOR THE PLANTING LEGEND

SCALE:
DATE:
APPROVED BY:
CHECKED BY:
DRAWN BY:
DESIGNED BY:
FILENAME:

CITY OF KIRKLAND
DEPARTMENT OF PUBLIC WORKS
123 FIFTH AVENUE KIRKLAND, WA 98033
(425) 587-3800 www.kirklandwa.gov

TLC – L-206
CITY OF KIRKLAND
TOTEM LAKE PEDESTRIAN BRIDGE
CORRIDOR RESTORATION 6
AS SHOWN

Scale in Feet
SURVEY AND SHEET NOTES:

1. NO SURVEY NORTH OF TRAIL IMPROVEMENTS. ACTUAL LIMITS OF CLEARING AND GRADING TO BE COORDINATED WITH CITY FOR PURPOSES OF BIDDING. THE AREAS SHOWN ARE INCLUDED IN THE 9.6 ACRES OF CLEARING AND GRADING.
2. NOTE SCALE CHANGE FROM 10=SCALE TO 40=SCALE NORTH OF MATCHLINE.
3. KING COUNTY SEWER MARKS SHOWN ON THIS PLAN ARE BEYOND SURVEY LIMITS AND BASED ON GIS INFORMATION. LOCATION SHOWN IS APPROXIMATE. SEE NOTE 8.

NOTED:
1. INVESTIGATE PLANTS TO BE REMOVED FROM THE ENTIRE PROJECT SITE THROUGHOUT THE COURSE OF THE PROJECT. REMOVAL TO OCCUR AT POINT OF CONSTRUCTION, AND REMOVAL TO PROCEED BIOLOGICAL MATERIAL PLANNING
2. IDENTIFY SUSPECTED LARGE WOOD DEBRIS AND REMOVE SUSPECTED PLANTS WITHIN THE WETLANDS AND REMOVE LARGE DEBRIS TO ENSURE INSTALLATION REMOVAL.
3. CONTRACTOR SHALL VERIFY AND PROVIDE INFORMATION TO THESE AREAS. SEE SHEET L-100 AND L-100 FOR DESIGN AND PLACEMENT.
4. CONTRACTOR SHALL CONFIRM TIMES AND AREAS PERMITS FROM SIGNS AND SEGMENTS. SEE SPECIFICATIONS.

CORRIDOR UNDERWATER PLANT SCHEDULE

WETLAND RESTORATION/ENHANCEMENT SIMILAR MIX
WETLAND RESTORATION GROUND COVER MIX
SLURP RESTORATION/ENHANCEMENT SIMILAR MIX (SEE NOTE 5)
SLURP RESTORATION GROUND COVER MIX (SEE NOTE 3)
DRAINAGE DEPTH SEEDING MIX (SEE NOTE 3)
INFLATION POND AND DRAINAGE DEPTH MIX ZONE 1 (SEE NOTE 3)
INFLATION MIX ZONE 3 (SEE NOTE 3)
MICROSED LANN (SEE NOTE 3)
SOD LANN (SEE NOTE 3)
THAI EDGE SEEDING MIX (SEE NOTE 3)
IRRIGATION NOTES

1. DESIGNER MUST PROVIDE RADIO FREQUENCY IDENTIFICATION (RFID) TAGS AT INSTALLATION OF EACH CONCRETE PIPE. CONCRETE PIPE MUST BE CEMENTED IN PLACE WITH THE RFID TAGS CONNECTED TO THE BACK OF THE PIPE WITH PLASTIC BANDS. CONCRETE PIPE INSTALLATION MUST BE PERFORMED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

2. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

3. TRAFFIC CONTROL MUST BE ADEQUATE DURING CONSTRUCTION PERIOD. TRAFFIC CONTROL MUST BE IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

4. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

5. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

6. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

7. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

8. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

9. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

10. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

11. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

12. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

13. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

14. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

15. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

16. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

17. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

18. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

19. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

20. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

21. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

22. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

23. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

24. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.

25. PUMP AND ELECTRICAL SYSTEMS MUST BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER’S INSTRUCTIONS. CONCRETE PIPE INSTALLATION MUST MEET ALL LOCAL CODES AND STANDARDS.
NOTES:

1. REFER TO CONTRACT SPECIFICATIONS FOR FURTHER DETAILS.

2. PRIOR TO CONSTRUCTION THE CONTRACTOR SHALL OBTAIN AND PAY FOR ALL PERMITS RELATING TO THE WORK IN THIS CONTRACT, CONTACT THE VARIOUS AGENCIES INVOLVED RELATING TO THE ELECTRICAL WORK AND INCLUDE ALL INSPECTION AND OTHER FEES IN THE CONTRACT.

3. THE CONTRACTOR SHALL UNDERTAKE ALL WORK IN STRICT ACCORDANCE WITH THE NATIONAL ELECTRICAL CODE AND ANY WASHINGTON STATE WAC 296-45, "SAFETY STANDARDS FOR ELECTRICAL WORKERS" AND WAC 296-46, "LAWS, RULES & REGULATIONS FOR INSTALLING WIRES & EQUIPMENT".

4. ALL WORK SHALL BE PERFORMED AND SUPERVISED BY A REGISTERED ELECTRICAL CONTRACTOR.

5. REFER TO SPECIFICATIONS FOR PRODUCT REQUIREMENTS.

6. CONTRACTOR SHALL PROVIDE O&M MANUALS IN PDF FORMAT.

7. ALL CAST IN PLACE AND SURFACE MOUNT CONDUITS SHALL BE GALVANIZED RIGID METAL CONDUIT (RMC).

8. CONFIRM EQUIPMENT COLOURS WITH CITY/ARCHITECT PRIOR TO ORDERING.

9. USE OF DISSIMILAR METALS WHEN IN CONTACT WITH EACH OTHER IS NOT ALLOWED.

10. BOND ALL EXPOSED METAL (HANDRAILS & PLATFORMS) TO GROUND SYSTEM. GROUND WIRE SHALL BE MIN. No. 2 COPPER. USE UL LISTED GROUND CONNECTORS.

11. ALL FLEX CONDUIT AND CABLE CONNECTORS SHALL BE STAINLESS STEEL (T&B TYPE) WITH GROUND LOCK NUT.

LEGEND

- LED ACCENT FLOODLIGHT
- UNDER BRIDGE STREET LIGHTING
- LED VARIOUS POLE AND LAMINATE OFF BRIDGE. CANVAS TYPE 1 LED WALKWAY/CORB.
- EXISTING STREET LIGHT POLE
- RAILING LIGHTING
- UNDERGROUND CONDUIT AND CONDUCTORS OFF BRIDGE

APPROPRIATE AS LOCATION IN CURB.

GROUND CONNECTION TO STEEL POLE AT PT TO /
AND 18' X 12' GROUND ROVE AT AS INDICATED.
Measured groundwater level in exploration, well, or piezometer

Distinct contact between soil strata

Approximate contact between soil strata

Contact between geologic units

Contact between soil of the same geologic unit

Laboratory compaction test

Moisture content and dry density

Permeability or hydraulic conductivity

Blowcount is recorded for driven samplers as the number of blows required to advance sampler 12 inches (or distance noted). See exploration log for hammer weight and drop.

"P" indicates sampler pushed using the weight of the drill rig.

"WOH" indicates sampler pushed using the weight of the hammer.

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions.

Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made. They are not warranted to be representative of subsurface conditions at other locations or times.

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions.

Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made. They are not warranted to be representative of subsurface conditions at other locations or times.

Groundwater Contact

Measured free product in exploration, well, or piezometer

Material Description Contact

Sample Symbol Descriptions

Pipe symbol indicates sampler pushed using the weight of the drill rig.

"WOH" indicates sampler pushed using the weight of the hammer.

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions.

Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made. They are not warranted to be representative of subsurface conditions at other locations or times.

groEnginers

Key to Exploration Logs

Figure A.1

CITY OF KIRKLAND
DEPARTMENT OF PUBLIC WORKS
125 FIFTH AVENUE KIRKLAND, WA 98033
(425) 587-3800 www.kirklandwa.gov

NOTES:

1. FOR BOREHOLE AND TEST PIT LOCATIONS SEE
 GEOTECHNICAL REPORT

2. THE BOREHOLE LOGS IS ONLY A PORTION OF A REPORT
 PREPARED BY DESIGNERS "TOTTEN LAKE CONNECTION"
 PAGE 3 "GEOTECHNICAL ENGINEERING SERVICES" DATED
 OCTOBER 2016.

THIS REPORT HAS BEEN PREPARED FOR THE TOTTEN
LAKE CONNECTOR PROJECT. COGW ENGINEERS,
THEM EMPLOYEES, SUBCONTRACTORS OR AGENTS
ACCEPT NO RESPONSIBILITY FOR ANY OTHER USE.

COWI

TLCG-400

CITY OF KIRKLAND
TOTTEN LAKE CONNECTION
GEOTECHNICAL BOREHOLE KEY

FILENAME:

SCALE:

DATE

CHECKED BY:

DRAWN BY:

DESIGNED BY:

SHEET:
Log of Boring B-1 (continued)

FIELD DATA

<table>
<thead>
<tr>
<th>Interval</th>
<th>Group</th>
<th>Classification</th>
<th>Elevation (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

REMARKS

- 1 foot of heave
- Gray lean clay with sand, gravel and cobbles (very stiff to hard, wet)
- Gray fine to coarse sand with gravel and cobbles (dense to very dense, wet)
- Gray fine sand with silt and gravel (very dense, wet)
- Gray fine to medium sand with gravel (very dense, wet)
- Grayish brown silty fine to coarse sand with gravel (dense, wet)
- Grayish brown fine to medium sand with silt (very loose to medium dense, wet)
- Brown silt with sand (very stiff to hard, wet)
- Orange-brown lean clay with sand and gravel (hard, wet)
- Grades to with occasional gravel
- Borehole refusal at 42½ feet; moved 3 feet to the north and drilled to 45 feet
- Auger refusal at 30½ feet due to hard intact clay
- Driller noted gravel at 22 feet
- Driller noted easier drilling at 27 feet
- Added drilling mud to borehole
- Driller noted gravel at 22 feet
- Driller noted easier drilling at 27 feet
- Auger refusal at 30½ feet due to hard intact clay
- Field Logging System: Automatic
- Hammer Data System: 140 (lbs) / 30 (in) Drop
- Data Source: Geologic Drill Exploration, Inc.

MATERIAL DESCRIPTION

- HRP
- AL
- SA
- MC
- CL
- SP

REMARKS

- See "Remarks" section for groundwater observed

GRAPHIC LOG

- Figure A-2

NOTES:

1. FOR BORING KEY SEE DRAWING TLC-G-400
2. FOR BORING LOCATIONS SEE DRAWING TLC-G-402
3. THIS BORING LOG IS ONLY A PORTION OF A REPORT PREPARED BY GEOENGINEERS TOTEM LAKE CONNECTOR.

This drawing has been prepared for the City of Kirkland. GEOENGINEERS, their employees, subcontractors or agents accept no responsibility for any other use.

LOG OF BORING B-1

FIELD DATA

<table>
<thead>
<tr>
<th>Interval</th>
<th>Group</th>
<th>Classification</th>
<th>Elevation (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

REMARKS

- 1 foot of heave
- Gray lean clay with sand, gravel and cobbles (very stiff to hard, wet)
- Gray fine to coarse sand with gravel and cobbles (dense to very dense, wet)
- Gray fine sand with silt and gravel (very dense, wet)
- Gray fine to medium sand with gravel (very dense, wet)
- Brown silt with sand (very stiff to hard, wet)
- Orange-brown lean clay with sand and gravel (hard, wet)
- Grades to with occasional gravel

MATERIAL DESCRIPTION

- HRP
- AL
- SA
- MC
- CL
- SP

REMARKS

- See "Remarks" section for groundwater observed

GRAPHIC LOG

- Figure A-2

NOTES:

1. FOR BORING KEY SEE DRAWING TLC-G-400
2. FOR BORING LOCATIONS SEE DRAWING TLC-G-402
3. THIS BORING LOG IS ONLY A PORTION OF A REPORT PREPARED BY GEOENGINEERS TOTEM LAKE CONNECTOR.

This drawing has been prepared for the City of Kirkland. GEOENGINEERS, their employees, subcontractors or agents accept no responsibility for any other use.

LOG OF BORING B-1
Log of Boring with Monitoring Well B-2 (continued)

MATERIAL DESCRIPTION

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Elevation (feet)</th>
<th>Blows/foot</th>
<th>Recovered (in)</th>
<th>Interval</th>
<th>CONTENT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2617</td>
<td>140/30</td>
<td>140</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2618</td>
<td>140/30</td>
<td>140</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2619</td>
<td>140/30</td>
<td>140</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2620</td>
<td>140/30</td>
<td>140</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2621</td>
<td>140/30</td>
<td>140</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

FIELD DATA

WELL LOG

NOTES:

1. FOR BOREHOLE KEY SEE DRAWING TLC-G-402.
2. FOR BOREHOLE LOCATIONS SEE DRAWING TLC-G-412.
3. THE BOREHOLE LOG IS ONLY A PORTION OF A REPORT PREPARED BY GEORESOURCES TOTEM LAKE CONVERSATION.

DEPARTMENT OF PUBLIC WORKS

CITY OF KIRKLAND

GEOENGINEERS

DRAWN BY:

CHECKED BY:

DATE:

SCALE:

DESIGNED BY:

FILENAME:

ADDRESS:

PROJECT NUMBER:

SHEET:

DATE:
Groundwater observed at 17½ feet at time of drilling.

Added drilling mud to borehole.

Gray fine to medium sand with silt and gravel (loose, moist) (fill)

Grayish brown silty fine to medium sand with gravel (medium dense, moist) (fill)

Reddish brown silty fine to medium sand with occasional gravel (very loose to loose, moist) (fill)

Grades to orange-brown

Brown fine to medium sand with silt (loose to medium dense, wet)

Brown silty fine to medium sand with gravel (medium dense to dense, wet)

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Testing</th>
<th>Interval</th>
<th>Blows/foot</th>
<th>Collected Sample</th>
<th>Depth (feet)</th>
<th>Recovered (in)</th>
<th>Group</th>
<th>Classification</th>
<th>Elevation (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>5</td>
<td>GP</td>
<td>SP-SM</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>10</td>
<td>SP</td>
<td>SM</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>15</td>
<td>SP</td>
<td>SM</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>20</td>
<td>SP</td>
<td>SM</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>25</td>
<td>SP</td>
<td>SM</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>30</td>
<td>SP</td>
<td>SM</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>35</td>
<td>SP</td>
<td>SM</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>40</td>
<td>GP</td>
<td>SP-SM</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td>45</td>
<td>GP</td>
<td>SP-SM</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td>50</td>
<td>GP</td>
<td>SP-SM</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>55</td>
<td>GP</td>
<td>SP-SM</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td>60</td>
<td>GP</td>
<td>SP-SM</td>
<td>85</td>
</tr>
</tbody>
</table>

Graphic Log

Group Classification Elevation (feet)

GP 123 105 87 69 51 33 15
SP-SM 140 135 130 125 120 115 110
SM 105 100 95 90 85 80 75

MATERIAL DESCRIPTION

REMARKS

Gray fine gravel with sand (medium dense, moist) (fill)

Brown and gray sandy silt with gravel (hard, wet)

Brownish gray sandy clay with gravel (stiff to very stiff, wet)

Orange-brown clayey fine to coarse sand with gravel (medium dense, wet)

Orange-brown silty fine to coarse gravel with sand and cobbles (medium dense to dense, wet)
Log of Boring with Monitoring Well B-4 (continued)

Field Data
- **Project Location**: Kirkland, Washington
- **Project Number**: 0231-090-00
- **Datum**: NAD83 (feet)
- **Surface Datum**: Elevation (ft)
- **Vertical Datum**: NAVD88

Well Log
- **Equipment**: Diedrich D-50 Track Rig
- **Drilling Method**: Hollow-stem Auger
- **Drilling Hammer**: Automatic
- **Checked By**: Driller Total
- **Logged By**: Ed Sheehan

Log Data
- **Sample Name**: Collected Sample
- **Blows/foot**: 140 (lbs) / 30 (in) Drop
- **Interval**: Recovered (in)
- **Depth (feet)**
- **Elevation (feet)**
- **Content (%)**
- **Fines**: Moisture
- **Classification**: Mixed
- **Description**: GC

Notes
1. For borehole key, see drawing TLC-G-102.
2. For borehole locations, see drawing TLC-G-102.
3. This borehole log is only a portion of a report prepared by Geoengineers. Totem Lake Connector Project, October 2018. Geoengineers accepts no responsibility for any other use.
<table>
<thead>
<tr>
<th>MATERIAL DESCRIPTION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray fine gravel with sand (medium dense, moist) (fill)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. FOR BORDBALE KEY SEE DRAWING TLC-405.
2. FOR BORDBALE LOCATIONS SEE DRAWING TLC-402.
3. THIS BORDBALE LOG IS ONLY A PORTION OF A REPORT PREPARED BY GEOTECHNICAL ENGINEERING SERVICES' DATED OCTOBER 2019.

Graphic Log

Group
- CL
- SC
- ML
- CL
- SC

Classification
- Fines Content (%)
- Moisture Content (%)

Field Data

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Testing</th>
<th>Recovered (in)</th>
<th>Interval</th>
<th>Blows/foot</th>
<th>Collected Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Log of Boring B-5

Project Number: 0231-090-00

Project Location: Kirkland, Washington

Log of Boring B-5

Figure A-6

Filename:

123 FIFTH AVENUE KIRKLAND, WA 98033

DEPARTMENT OF PUBLIC WORKS

CITY OF KIRKLAND

(425) 587-3800 www.kirklandwa.gov
Log of Boring B-13

Project: Totem Lake Connector
Project Location: Kirkland, Washington
Project Number: 0231-090-01

Figure A-14
Sheet 1 of 3

Material Description
Remarks

Interval
Depth (feet)
Elevation (feet)

Blows/foot
Recovered (in)

Field Data

MATERIAL DESCRIPTION

REMARKS

NOTES:
1. FIGURE BOREHOLE LOG IS DRAWING TLC-G-413.
2. FOR BOREHOLE LOCATIONS SEE DRAWING TLC-G-02.
3. THIS BOREHOLE LOG IS ONLY A PORTION OF A REPORT PREPARED BY GEOENGINEERS TOTEM LAKE CONNECTOR PHASE 2 GEOFIELD ENGINEERING SERVICES DATED OCTOBER 2018.

City of Kirkland
Department of Public Works
125 Fifth Avenue Kirkland, WA 98033
425-587-3530 www.kirklandwa.gov

GroEngineers

Hammer
Driller
Geologic Drill Exploration, Inc.

Logging Date
Logged By

Equipment
Datum
Vertical Datum
Surface Elevation (ft)

Northing (Y)
Easting (X)
Datum
System

Geologic Unit

Description
Classification
Group
Testing
Sample Name
Collected Sample

Headspace
Vapor (ppm)
Sheen

Notes:

Datum
Vertical Datum
Surface Elevation (ft)

Northing (Y)
Easting (X)
Datum
System

Geologic Unit

Description
Classification
Group
Testing
Sample Name
Collected Sample

Headspace
Vapor (ppm)
Sheen

Notes:
Log of Boring B-6

MATERIAL

REMARKS

- Gray silty fine sand (dense, wet)
- Gray silt with sand (very stiff, moist)
- Gray sandy silt (very stiff to hard, moist to wet)
- Gray sandy silt (hard, wet)
- Gray silt with lenses of peat (hard, moist)

FIELD DATA

- Depth (ft)
- Hammer Data Drilled
- System Datum
- Easting (X)
- Northing (Y)
- Surface Elevation (ft)

Notes:

1. FOR BORING KEY SEE DRAWING TLC-G-406
2. FOR BORING LOCATIONS SEE DRAWING TLC-G-402
3. THIS BORING LOG IS ONLY A PORTION OF A REPORT PREPARED BY GEOENGINEERS TOTEM LAKE CONNECTOR PAGE 5 GEOENGINEERING SERVICES DATED OCTOBER 2018.

REMARKS:

- Environmental concerns in boring

Sample Name

- Testing Fines Content (%)
- Moisture Content (%)

Headers:

- Geologic Drill Exploration, Inc.
- Diedrich D-50 Track Rig
- 140 (lbs) / 30 (in) Drop Hollow-stem Auger

Date: 2/2/2017

Path: P:\0\0231090\GINT\023109000.GPJ

DBLibrary/Library: GEOENGINEERS_DF_STD_US_JUNE_2017.GLB/GEI8_GEOTECH_STANDARD_%F_NO_GW

Figure A-7
Log of Boring B-7

Project: Totem Lake Connector
Project Location: Kirkland, Washington
Project Number: 0231-090-00

Material Description:

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Field Data</th>
<th>Material Description</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Gray sandy silt with gravel and occasional thin lenses of peat (stiff to hard, moist)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Gray silty fine to coarse sand with gravel (dense, moist) (fill)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Gray sandy silt (hard, wet)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Groundwater observed at 12½ feet at time of drilling</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Gray sandy silt (slightly to hard, moist)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Gray sandy silt (stiff to medium dense, moist)</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>Gray fine gravel with sand (medium dense, moist) (fill)</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>Brown silty fine to coarse gravel with sand (medium dense, moist) (fill)</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td>Gray silty silt with sand (medium dense, moist)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- See Figure A-1 for explanation of symbols.
- Coordinates Data Source: Horizontal approximated based on Survey by Alliance Geomatics. Vertical approximated based on Survey by Alliance Geomatics.
- Drilled System Datum: HRP, GM, SM, ML/PT
- Method: See "Remarks" section for groundwater observed
- Easting (X): 1309310.13, Northing (Y): 261022.93, Surface Elevation (ft): 150.47
- Datum: NAVD88
- Date: 2/2/17
- Path: P:\0\0231090\GINT\023109000.GPJ
- DBLibrary/Library: GEOENGINEERS_DF_STD_US_JUNE_2017.GLB/GEI8_GEOTECH_STANDARD_%F_NO_GW

Approved:

GroEngineers

CITY OF KIRKLAND
DEPARTMENT OF PUBLIC WORKS
125 FIFTH AVENUE KIRKLAND, WA 98033
(425) 587-3800 www.kirklandwa.gov

NOTES:
1. FOR BOREHOLE KEY SEE DRAWING TLC-GL-102
2. FOR BOREHOLE LOCATIONS SEE DRAWING TLC-GL-102
3. THIS BOREHOLE LOG IS ONLY A PORTION OF A REPORT PREPARED BY GEOENGINEERS TOTEM LAKE CONNECTOR PAGE 3 GEOTECHNICAL ENGINEERING SERVICES DATED OCTOBER 2018.

THIS DRAWING HAS BEEN PREPARED FOR THE TOTEM LAKE CONNECTOR PROJECT BY GEOENGINEERS. THEIR EMPLOYEES, SUBCONTRACTORS OR AGENTS ACCEPT NO RESPONSIBILITY FOR ANY OTHER USE.
Log of Boring B-8

Project: Totem Lake Connector
Project Location: Kirkland, Washington
Project Number: 0231-090-01

Figure A-9

Date: 3/13/18
Path: P:\0\0231090\GINT\023109001.GPJ
DBLibrary/Library: GEOENGINEERS_DF_STD_US_JUNE_2017.GLB/GEI8_GEOTECH_STANDARD_%F_NO_GW

Fines Content (%)

Moisture Content (%)

REMARKS

FIELD DATA

MATERIAL DESCRIPTION

REMARKS

GRAPHIC LOG

Group

Classification

Elevation (feet)

0
5
10
15
20
25
30
35
40
45
50
CL

Collected Sample

Recovered (in)

Interval

Blows/foot

Notes:

1. FOR BORING KEY SEE DRAWING TLC-G-402
2. FOR BORING LOCATIONS SEE DRAWING TLC-G-102
3. THIS BOREHOLE LOG IS ONLY PART OF A REPORT PREPARED BY GEOENGINEERS TOTEM LAKE CONNECTOR

PAGES 2-9 GEOTECHNICAL ENGINEERING SERVICES DATED OCTOBER 2018.

THIS DRAWING HAS BEEN PREPARED FOR THE TOTEM LAKE CONNECTOR PROJECT BY GEOENGINEERS,
THEIR EMPLOYEES, SUBCONTRACTORS OR AGENTS
ACCEPT NO RESPONSIBILITY FOR ANY OTHER USE.

CITY OF KIRKLAND
DEPARTMENT OF PUBLIC WORKS
123 FIFTH AVENUE KIRKLAND, WA 98033
(425) 587-3800 www.kirklandwa.gov

GEOENGINEERS

COWI

KIRKLAND TOTEM LAKE CONNECTION
GEOTECHNICAL BOREHOLE 8

FILENAM:

SCALE:

DATE:

DRAWN BY:

DESIGNED BY:

SHEET:

CHECKED BY:

SIGNATURE:

CITY OF KIRKLAND
DEPARTMENT OF PUBLIC WORKS
123 FIFTH AVENUE KIRKLAND, WA 98033
(425) 587-3800 www.kirklandwa.gov

GEOENGINEERS

COWI

KIRKLAND TOTEM LAKE CONNECTION
GEOTECHNICAL BOREHOLE 8

FILENAM:

SCALE:

DATE:

DRAWN BY:

DESIGNED BY:

SHEET:

CHECKED BY:

SIGNATURE:

CITY OF KIRKLAND
DEPARTMENT OF PUBLIC WORKS
123 FIFTH AVENUE KIRKLAND, WA 98033
(425) 587-3800 www.kirklandwa.gov

GEOENGINEERS

COWI

KIRKLAND TOTEM LAKE CONNECTION
GEOTECHNICAL BOREHOLE 8

FILENAM:

SCALE:

DATE:

DRAWN BY:

DESIGNED BY:

SHEET:

CHECKED BY:

SIGNATURE:

CITY OF KIRKLAND
DEPARTMENT OF PUBLIC WORKS
123 FIFTH AVENUE KIRKLAND, WA 98033
(425) 587-3800 www.kirklandwa.gov

GEOENGINEERS

COWI

KIRKLAND TOTEM LAKE CONNECTION
GEOTECHNICAL BOREHOLE 8

FILENAM:

SCALE:

DATE:

DRAWN BY:

DESIGNED BY:

SHEET:

CHECKED BY:

SIGNATURE:

CITY OF KIRKLAND
DEPARTMENT OF PUBLIC WORKS
123 FIFTH AVENUE KIRKLAND, WA 98033
(425) 587-3800 www.kirklandwa.gov

GEOENGINEERS

COWI

KIRKLAND TOTEM LAKE CONNECTION
GEOTECHNICAL BOREHOLE 8

FILENAM:

SCALE:

DATE:

DRAWN BY:

DESIGNED BY:

SHEET:

CHECKED BY:

SIGNATURE:
Figure A-11

Log of Monitoring Well B-10

Log of Monitoring Well B-10 (continued)

Notes:

1. For borehole key see drawing TLC-G-100.
2. For borehole locations see drawing TLC-G-102.
3. This borehole log is only a portion of a report prepared by GeoEngineers, Totem Lake Connector, Phase 2, Geotechnical Engineering Services, dated October 2018.

This drawing has been prepared for the Totem Lake Connector Project, GeoEngineers, their employees, consultants or agents. They accept no responsibility for any other use.
Log of Boring B-14 (continued)

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Interval</th>
<th>Blows/foot</th>
<th>Classification</th>
<th>Group</th>
<th>Vapor (ppm)</th>
<th>Sheen</th>
<th>Classification Group</th>
<th>Graphic Log</th>
<th>Testing</th>
<th>Sample Name</th>
<th>Collected Sample</th>
<th>Blows/foot</th>
<th>Recovered (in)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.5</td>
<td>12.5</td>
<td>14</td>
<td>Gray fine to medium sand with gravel (very dense, wet)</td>
<td>SC</td>
<td>8</td>
<td>6</td>
<td>1 foot of heave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.6</td>
<td>12.6</td>
<td>13</td>
<td>Gray fine to medium sand with gravel (very dense, very wet)</td>
<td>SC</td>
<td>8</td>
<td>6</td>
<td>1 foot of heave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.7</td>
<td>12.7</td>
<td>12</td>
<td>Gray fine to medium sand with gravel (very dense, very wet)</td>
<td>SC</td>
<td>8</td>
<td>6</td>
<td>1 foot of heave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.8</td>
<td>12.8</td>
<td>11</td>
<td>Gray fine to medium sand with gravel (very dense, very wet)</td>
<td>SC</td>
<td>8</td>
<td>6</td>
<td>1 foot of heave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.9</td>
<td>12.9</td>
<td>10</td>
<td>Gray fine to medium sand with gravel (very dense, very wet)</td>
<td>SC</td>
<td>8</td>
<td>6</td>
<td>1 foot of heave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.0</td>
<td>13.0</td>
<td>9</td>
<td>Gray fine to medium sand with gravel (very dense, very wet)</td>
<td>SC</td>
<td>8</td>
<td>6</td>
<td>1 foot of heave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>13.1</td>
<td>8</td>
<td>Gray fine to medium sand with gravel (very dense, very wet)</td>
<td>SC</td>
<td>8</td>
<td>6</td>
<td>1 foot of heave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.2</td>
<td>13.2</td>
<td>7</td>
<td>Gray fine to medium sand with gravel (very dense, very wet)</td>
<td>SC</td>
<td>8</td>
<td>6</td>
<td>1 foot of heave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.3</td>
<td>13.3</td>
<td>6</td>
<td>Gray fine to medium sand with gravel (very dense, very wet)</td>
<td>SC</td>
<td>8</td>
<td>6</td>
<td>1 foot of heave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.4</td>
<td>13.4</td>
<td>5</td>
<td>Gray fine to medium sand with gravel (very dense, very wet)</td>
<td>SC</td>
<td>8</td>
<td>6</td>
<td>1 foot of heave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.5</td>
<td>13.5</td>
<td>4</td>
<td>Gray fine to medium sand with gravel (very dense, very wet)</td>
<td>SC</td>
<td>8</td>
<td>6</td>
<td>1 foot of heave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.6</td>
<td>13.6</td>
<td>3</td>
<td>Gray fine to medium sand with gravel (very dense, very wet)</td>
<td>SC</td>
<td>8</td>
<td>6</td>
<td>1 foot of heave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.7</td>
<td>13.7</td>
<td>2</td>
<td>Gray fine to medium sand with gravel (very dense, very wet)</td>
<td>SC</td>
<td>8</td>
<td>6</td>
<td>1 foot of heave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.8</td>
<td>13.8</td>
<td>1</td>
<td>Gray fine to medium sand with gravel (very dense, very wet)</td>
<td>SC</td>
<td>8</td>
<td>6</td>
<td>1 foot of heave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1. **Borehole Key:** See drawing TLC-G-400.
2. **For borehole locations:** See drawing TLC-G-02.
3. **This borehole log is only a portion of a report prepared by GEOENGINEERS."TOTEM LAKE CONNECTION PHASE 2 GEOFTECHNICAL ENGINEERING SERVICES" DATED OCTOBER 2018."
Log of Boring B-15

Project: Totem Lake Connector
Project Location: Kirkland, Washington
Project Number: 0231-090-01

Field Data

<table>
<thead>
<tr>
<th>Interval</th>
<th>Depth (feet)</th>
<th>Elevation (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material Description

<table>
<thead>
<tr>
<th>Interval</th>
<th>Blows/foot</th>
<th>Recovered (in)</th>
<th>Fines Content (%)</th>
<th>Moisture %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks

- **NOTES:**
 1.eldon Borehole Key: See drawing TLC-G-410.
 2. For borehole locations, see drawing TLC-G-410.
 3. This borehole log is only a portion of a report prepared by GEOENGINEERS "TOTEM LAKE CONNECTOR" project.

Log of Boring B-15 (continued)

Project: Totem Lake Connector
Project Location: Kirkland, Washington
Project Number: 0231-090-01

Field Data

<table>
<thead>
<tr>
<th>Interval</th>
<th>Depth (feet)</th>
<th>Elevation (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material Description

<table>
<thead>
<tr>
<th>Interval</th>
<th>Blows/foot</th>
<th>Recovered (in)</th>
<th>Fines Content (%)</th>
<th>Moisture %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks

- **NOTES:**
 1.eldon Borehole Key: See drawing TLC-G-410.
 2. For borehole locations, see drawing TLC-G-410.
 3. This borehole log is only a portion of a report prepared by GEOENGINEERS "TOTEM LAKE CONNECTOR" project.

Log of Boring B-15 (continued)

Project: Totem Lake Connector
Project Location: Kirkland, Washington
Project Number: 0231-090-01

Field Data

<table>
<thead>
<tr>
<th>Interval</th>
<th>Depth (feet)</th>
<th>Elevation (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material Description

<table>
<thead>
<tr>
<th>Interval</th>
<th>Blows/foot</th>
<th>Recovered (in)</th>
<th>Fines Content (%)</th>
<th>Moisture %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks

- **NOTES:**
 1.eldon Borehole Key: See drawing TLC-G-410.
 2. For borehole locations, see drawing TLC-G-410.
 3. This borehole log is only a portion of a report prepared by GEOENGINEERS "TOTEM LAKE CONNECTOR" project.

Log of Boring B-16

Project: Totem Lake Connector
Project Location: Kirkland, Washington
Project Number: 0231-090-01

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Elevation (feet)</th>
<th>Blows/foot</th>
<th>Recovered (in)</th>
<th>Collected Sample</th>
<th>Sample Name</th>
<th>Group</th>
<th>Classification</th>
<th>Moisture Content</th>
<th>Fines Content</th>
<th>Remarks</th>
</tr>
</thead>
</table>

Log of Boring B-16 (continued)

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Elevation (feet)</th>
<th>Blows/foot</th>
<th>Recovered (in)</th>
<th>Collected Sample</th>
<th>Sample Name</th>
<th>Group</th>
<th>Classification</th>
<th>Moisture Content</th>
<th>Fines Content</th>
<th>Remarks</th>
</tr>
</thead>
</table>

Log of Boring B-16 (continued)

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Elevation (feet)</th>
<th>Blows/foot</th>
<th>Recovered (in)</th>
<th>Collected Sample</th>
<th>Sample Name</th>
<th>Group</th>
<th>Classification</th>
<th>Moisture Content</th>
<th>Fines Content</th>
<th>Remarks</th>
</tr>
</thead>
</table>

NOTES:

1. The borehole key is shown on drawing TLC-G-416.
2. For borehole locations, see drawing TLC-G-416.
3. This borehole log is only a portion of a report prepared by GeoEngineers' Totem Lake Connector Phase 2 Geotechnical Engineering Services dated October 2018.
Log of Boring B-20

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Elevation (feet)</th>
<th>Northing (Y)</th>
<th>Easting (X)</th>
<th>MATERIAL</th>
<th>DESCRIPTION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00</td>
<td>137.16</td>
<td>261681.91</td>
<td>1309817.80</td>
<td>CL</td>
<td>Brownish gray silty fine to medium sand (very loose, wet)</td>
<td></td>
</tr>
<tr>
<td>11.00</td>
<td>137.16</td>
<td>261681.91</td>
<td>1309817.80</td>
<td>CL</td>
<td>Brownish gray silty fine to medium sand (very loose, wet)</td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td>137.16</td>
<td>261681.91</td>
<td>1309817.80</td>
<td>CL</td>
<td>Brownish gray silty fine to medium sand (very loose, wet)</td>
<td></td>
</tr>
<tr>
<td>13.00</td>
<td>137.16</td>
<td>261681.91</td>
<td>1309817.80</td>
<td>CL</td>
<td>Brownish gray silty fine to medium sand (very loose, wet)</td>
<td></td>
</tr>
<tr>
<td>14.00</td>
<td>137.16</td>
<td>261681.91</td>
<td>1309817.80</td>
<td>CL</td>
<td>Brownish gray silty fine to medium sand (very loose, wet)</td>
<td></td>
</tr>
<tr>
<td>15.00</td>
<td>137.16</td>
<td>261681.91</td>
<td>1309817.80</td>
<td>CL</td>
<td>Brownish gray silty fine to medium sand (very loose, wet)</td>
<td></td>
</tr>
<tr>
<td>16.00</td>
<td>137.16</td>
<td>261681.91</td>
<td>1309817.80</td>
<td>CL</td>
<td>Brownish gray silty fine to medium sand (very loose, wet)</td>
<td></td>
</tr>
<tr>
<td>17.00</td>
<td>137.16</td>
<td>261681.91</td>
<td>1309817.80</td>
<td>CL</td>
<td>Brownish gray silty fine to medium sand (very loose, wet)</td>
<td></td>
</tr>
<tr>
<td>18.00</td>
<td>137.16</td>
<td>261681.91</td>
<td>1309817.80</td>
<td>CL</td>
<td>Brownish gray silty fine to medium sand (very loose, wet)</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. **FIELD DATA** SEE DRAWING TLC-G-400.
2. **FOR BOREHOLE LOCATIONS SEE DRAWING TLC-G-002.**
3. **THE BOREHOLE LOG IS ONLY A PORTION OF A REPORT PREPARED BY GEOENGINEERS TOTEM LAKE CONNECTOR PHASE 2 GEOTECHNICAL ENGINEERING SERVICES** DATED OCTOBER 2018.

Log of Boring B-20 (continued)

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Elevation (feet)</th>
<th>Northing (Y)</th>
<th>Easting (X)</th>
<th>MATERIAL</th>
<th>DESCRIPTION</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.00</td>
<td>137.16</td>
<td>261681.91</td>
<td>1309817.80</td>
<td>CL</td>
<td>Brownish gray silty fine to medium sand (very loose, wet)</td>
<td></td>
</tr>
<tr>
<td>20.00</td>
<td>137.16</td>
<td>261681.91</td>
<td>1309817.80</td>
<td>CL</td>
<td>Brownish gray silty fine to medium sand (very loose, wet)</td>
<td></td>
</tr>
<tr>
<td>21.00</td>
<td>137.16</td>
<td>261681.91</td>
<td>1309817.80</td>
<td>CL</td>
<td>Brownish gray silty fine to medium sand (very loose, wet)</td>
<td></td>
</tr>
<tr>
<td>22.00</td>
<td>137.16</td>
<td>261681.91</td>
<td>1309817.80</td>
<td>CL</td>
<td>Brownish gray silty fine to medium sand (very loose, wet)</td>
<td></td>
</tr>
<tr>
<td>23.00</td>
<td>137.16</td>
<td>261681.91</td>
<td>1309817.80</td>
<td>CL</td>
<td>Brownish gray silty fine to medium sand (very loose, wet)</td>
<td></td>
</tr>
<tr>
<td>24.00</td>
<td>137.16</td>
<td>261681.91</td>
<td>1309817.80</td>
<td>CL</td>
<td>Brownish gray silty fine to medium sand (very loose, wet)</td>
<td></td>
</tr>
<tr>
<td>25.00</td>
<td>137.16</td>
<td>261681.91</td>
<td>1309817.80</td>
<td>CL</td>
<td>Brownish gray silty fine to medium sand (very loose, wet)</td>
<td></td>
</tr>
<tr>
<td>26.00</td>
<td>137.16</td>
<td>261681.91</td>
<td>1309817.80</td>
<td>CL</td>
<td>Brownish gray silty fine to medium sand (very loose, wet)</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. **FIELD DATA** SEE DRAWING TLC-G-400.
2. **FOR BOREHOLE LOCATIONS SEE DRAWING TLC-G-002.**
3. **THE BOREHOLE LOG IS ONLY A PORTION OF A REPORT PREPARED BY GEOENGINEERS TOTEM LAKE CONNECTOR PHASE 2 GEOTECHNICAL ENGINEERING SERVICES** DATED OCTOBER 2018.
Log of Test Pit TP-1

Log of Test Pit TP-2

Material Description

<table>
<thead>
<tr>
<th>Group</th>
<th>Classification</th>
<th>Sample Name</th>
<th>Testing</th>
<th>Moisture Content (%)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Testing Sample

<table>
<thead>
<tr>
<th>Date</th>
<th>Excavated Surface Elevation (ft)</th>
<th>Vertical Datum</th>
<th>Coordinate System</th>
<th>Easting (X)</th>
<th>Northing (Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11/8/2017 9.5</td>
<td>145</td>
<td>NAVD88</td>
<td>1309728</td>
<td>261533</td>
</tr>
</tbody>
</table>

Remarks

- Caving observed at 4 to 7 feet below ground surface
- Groundwater seepage observed at 6 feet below ground surface following infiltration test

Notes:

See Figure A-1 for explanation of symbols.

The depths on the test pit logs are based on an average of measurements across the test pit and should be considered accurate to ½ foot.

Coordinates Data Source: Horizontal approximated based on topographic map. Vertical approximated based on topographic map.

For more information, see the technical report by GroEngineers, 123 Fifth Avenue, Kirkland, Washington, or the City of Kirkland.

City of Kirkland

Department of Public Works

123 Fifth Avenue, Kirkland, WA 98033

Project: Totem Lake Connector

Project Number: 0231-090-01

Log of Test Pit TP-1

Check by HRP
Logged by Excavator
Kelly's Excavating, Inc.
Komatsu 140 Backhoe

Figure A-22
Sheet 1 of 1

Log of Test Pit TP-2

Check by HRP
Logged by Excavator
Kelly's Excavating, Inc.
Komatsu 140 Backhoe

Figure A-23
Sheet 1 of 1

CITY OF KIRKLAND

DEPARTMENT OF PUBLIC WORKS

123 FIFTH AVENUE KIRKLAND, WA 98033

(425) 587-3800 www.kirklandwa.gov